
BIRZEIT UNIVERSITY

Faculty of Engineering and Technology
Master of Software Engineering

THESIS

Self-admitted Technical Debt Identification From Source Code Comments

and Commits Using NLP and Machine Learning.

Author: Ahmed Sabbah

Supervisor: Dr. Abualsoud Hanani

July 28, 2021

https://birzeit.edu

i

BIRZEIT UNIVERSITY

Faculty of Engineering and Technology
Master of Software Engineering

Self-admitted Technical Debt Identification From Source Code Comments and

Commits Using NLP and Machine Learning.

�
é

	
ªÊË @

�
ém.
Ì'AªÓ ÐY

	
j

�
J�AK.

�
éK
PY�ÖÏ @

�
èQ

	
®J

�
�Ë@

�
HA

�
®J
Êª

�
K 	áÓ AJ

�
K @

	
X éK.

	
¬Q�

�ªÖÏ @ ú

	
æ

	
®Ë @ 	áK
YË@ YK
Ym�

�
'

ú

Í
�
B@ ÕÎª

�
JË @ð

�
éJ
ªJ
J.¢Ë@

Committee:

Dr. Abualsoud Hanani , Birzeit University.

Dr. Ahmad Abusnaina , Birzeit University.

Dr. Anas Toma , An-Najah National University.

A thesis submitted in fulfilment of the requirements

for the degree of Maters in Software Engineering

July 28, 2021

https://birzeit.edu

ii

Self-admitted Technical Debt Identification From Source Code Comments and

Commits Using NLP and Machine Learning.

Thesis
Author : Ahmed Sabbah

Approved by the thesis committee:

Dr. Abualsoud Hanani : (Chairman of the Committee)

Dr. Ahmed Abusnaina : (Member)

Dr. Anas Toma : (Member)

Date approved:

June 20, 2021

iii

Declaration of Authorship

I, Ahmed Sabbah , declare that this thesis titled, “Self-admitted Technical

Debt Identification From Source Code Comments and Commits Using NLP and

Machine Learning.” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master

degree at Birzeit University.

• Where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have con-

tributed myself.

iv

Abstract
Technical Debt (TD) is a metaphor that describes the immature software that

contains the issues are occurred by the developers intentionally. This usually

happens when they postponed the optimal code implementation to the future

to achieve short-term benefits. TD has been unintentional since the lack of devel-

opers’ knowledge. Recently, self-admitted technical debt (SATD) term is intro-

duced to express the TD that occurs intentionally. The developers write the com-

ments in the source code file to admit the TD by themselves. Previous studies

have shown that the automatic detection of SATD can be done from the source

code comments. Most of these studies have focused on the syntactic or pat-

tern analysis of the comments, and little of them considered the sentimental

analysis of the comments sentences. This thesis investigates the effectiveness of

Natural Language Processing (NLP), machine learning, and deep learning tech-

niques for automatically identifying SADT from source comments and commits.

NLP involves pre-processing the source code comments, which are defined as

SATD, then extract features from the comments using count-based and word

embedding representations. For the count-based approach, TF-IDF method was

used. The word embedding for features extracted using pre-trained models was

trained on large universal vocabularies such as word2vec, GolVe, BERT, Fast-

text, and specific software engineering models. In the last step, classical machine

learning (ML) algorithms will be used, such as Naive Bayes (NB), Random For-

est(RF), and Support-Vector Machines (SVM). Additionally, the state-of-the-art

neural network techniques that are known as deep learning (DL), such as Con-

volutional Neural Network (CNN) are used to classify the comments and com-

mits into five classes representing the types of SATD. The types of SATD include

requirement debt, design debt, defect debt, test debt, and documentation debt.

To achieve that, more than one dataset is used in previous studies was combined.

v

5082 comments and commits were collected that classified as SATD, but they

are not labeled according to the considered five SADT categories, so the manu-

ally annotate 1147 comments and 366 commits into one of these five categories.

Adataset includes a total of 1513 comments and commits classified to the five

categories of SATD . Additionally, another dataset consisting of 4,071 comments

were manually labeled and publicly available by the author of [59] (Mdataset).

The proposed system can classify the SATD comments and commits into the five

categories using classical ML and DL with Adataset, Mdataset, and combined

datasets. The RF classifier achieved an accuracy of 0.822 with Adataset, 0.820

with Mdataset, and 0.826 with the combined dataset. With Adataset the CNN

achieved an accuracy of 0.838 with BERT. With Mdataset, the CNN achieved an

accuracy of 0.809 and 0.812 with BERT and Word2Vec, respectively. Finally, the

CNN reached the best accuracy of 0.849 with BERT when using the combined

dataset. AS a result, the proposed systems outperform the results of similar

studies, which classify the SATD into two types (Requirement and design) by at

least 0.11 when using the Mdataset.

vi

Acknowledgements

At the end of the stage, you should close your eyes and take time to remem-

ber those wonderful who stood by us to thank them. First, I am thankful and

grateful to God for giving me the direction, strength, patience, and opportu-

nity to complete my master’s degree. I would like to thank my supervisor, Dr.

Abualsoud Hanani for his invaluable advice, continuous support, and patience

during my master thesis preparation, and for teaching me how to overcome lim-

itations. I would also like to thank my wife, whom without this would have not

been possible. I also appreciate all the support I received from my parents and

the rest of my family.

vii

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Problem statement . 5

1.3 Research contributions . 5

1.4 Research Questions . 6

1.5 Structure of thesis . 7

2 Background 8

2.1 Technical debt . 8

2.1.1 Self-admitted technical debt 9

2.2 Text classification . 10

2.2.1 Natural Language Processing (NLP) 10

2.2.2 Text Pre-processing . 11

2.2.3 Word representation . 12

2.2.3.1 Bag Of Word (BoW) 13

2.2.3.2 Term Frequency Inverse Document Frequency (TF-

IDF) . 13

2.2.3.3 Word embeddings 14

2.2.3.4 Word2Vec . 15

2.2.3.5 Glove . 16

viii

2.2.3.6 Fasttext . 17

2.2.3.7 BERT . 17

2.3 Machine Learning (ML) . 19

2.3.1 Statistical classification . 19

2.3.2 Functional classification. 20

2.3.3 Neural network classification 22

2.3.3.1 Artificial neural network (ANN) 22

2.3.3.2 Activation functions 24

2.3.3.3 Convolutional Neural Network (CNN) 26

3 Literature review 30

3.1 Technical Debt Metaphor: Definition and Expansion 30

3.2 Identification of Technical Debt through code-base 34

3.3 Identification of Technical Debt through Source Code Comments

(Self-Admitted Technical Debt) . 36

3.3.1 Pattern-based approaches 40

3.3.2 Machine-learning approaches 42

3.3.3 Deep-learning approaches 45

3.4 Identification of Self-Admitted Technical Debt Using Commits Mes-

sages . 47

4 Research Methodology 50

4.1 Dataset description . 51

4.1.1 Source code comments . 51

4.1.2 Commits messages . 52

4.1.3 Manual annotation . 53

4.1.3.1 Manual annotation result 59

4.1.3.2 Kappa Test . 60

ix

4.1.4 Data exploratory and analysis 63

4.1.4.1 Data analysis at text level 63

4.1.4.2 Data analysis at features level 67

4.2 Research approach . 70

4.3 System design. 70

4.3.1 Preprocessing. 70

4.3.1.1 Tokenization. 71

4.3.1.2 Text cleaning: . 72

4.3.1.3 Normalization: . 72

4.3.2 Features engineering . 73

4.3.2.1 Syntactic vectorization methods 74

4.3.2.2 Word embedding method 76

4.3.3 Machine learning Classifiers 78

4.3.3.1 Support Vector Machines classifier (SVM) 78

4.3.3.2 Naive Bayes classifier (NB) 78

4.3.3.3 Random Forest (RF) 79

4.3.3.4 Convolution Neural Network (CNN) 79

4.4 Evaluation metric: . 80

5 Experimental setup 83

5.1 Environment setup: . 85

5.2 Pre-Processing . 85

5.2.1 Tokenization . 86

5.2.2 Text cleaning . 86

5.2.3 Normalization . 86

5.3 Features engineering . 86

5.3.0.1 TF-IDF vectorization 87

x

5.3.0.2 Word2Vec vectorization 88

5.3.0.3 Universal sentence encoder 88

5.3.0.4 GloVe vectorization 89

5.3.0.5 Fasttext vectorization 89

5.3.0.6 BERT vectorization 89

5.3.1 Parameters setting for classifiers 89

5.3.1.1 Classic machine learning classifiers 89

5.3.1.2 Deep learning classifiers 90

6 Experiments and results 91

6.1 Experiments using classical machine learning algorithms 91

6.1.1 Experiment set 1: Adataset 91

6.1.2 Experiments set 2: Mdataset 94

6.1.3 Experiments set 3: The combined dataset 96

6.2 Deep learning . 98

6.2.1 Single-layer CNN . 99

6.2.1.1 Experiments set 4: Adataset 99

6.2.1.2 Experiments set 5: Mdataset 101

6.2.1.3 Experiments set 6: Combined dataset 103

6.2.2 Multiple-layer CNN (MLCNN) 105

6.2.2.1 Experiments set 7: Adataset 106

6.2.2.2 Experiments set 8: Mdataset 108

6.2.2.3 Experiments set 9: An exploratory experiment

for combined-2 dataset 111

6.3 Statistical Test . 116

6.4 Discussion: . 118

xi

7 Conclusion and future work: 123

7.0.1 Future work . 125

7.0.2 Threats to validity . 126

8 Appendix A 136

8.1 Database ER-Diagram . 136

8.2 Website Pages . 136

xii

List of Figures

2.2.1 Word2Vec models architectures [45] 16

2.3.1 Support vector machine for linear classification 21

2.3.2 ANN with four input neurons and b input called a bias that al-

lows the model to fit the data better,one hidden layer consisting

of three neurons, and one target neuron output 23

2.3.3 Sigmoid activation function . 25

2.3.4 Tanh activation function . 25

2.3.5 ReLU activation function . 26

2.3.6 Convolutional Neural Networks for Sentence Classification by Yoon

Kim. [32] . 27

2.3.7 Example convolution operation in 2D using a 3x3 filter. The filter

move one step for each operation and add the result in the fea-

ture map. then, the filter slide to the right and perform the same

operation down. 27

2.3.8 Matrix with stride 2 and 2x2 window 28

2.3.9 Max pooling . 28

2.3.10The averages rounded to the nearest integer. 29

2.3.11Sum pooling. 29

3.0.1 literature review workflow . 31

xiii

3.1.1 Technical Debt Quadrant [21] . 33

4.0.1 Research methodology workflow 50

4.1.1 Sample of comments dataset [59] 51

4.1.2 Sample of commits dataset; 1 classified as SATD, 0 unclassified

[54] . 53

4.1.3 Comments classification . 59

4.1.4 Commits classification . 59

4.1.5 Experts versus author for requirements classification 60

4.1.6 Experts versus author for Design classification 61

4.1.7 Experts versus author for Defect classification 61

4.1.8 Experts versus author for Test classification 62

4.1.9 Experts versus author for Documentation classification 62

4.1.10Input data for Kappa test . 62

4.1.11Number of characters appearing in each comment without pre-

processing . 64

4.1.12Number of words appearing in each comment wihout preprocess-

ing . 64

4.1.13Number of words appearing in each comment after preprocessing 65

4.1.14Average word length appearing in each comment 65

4.1.15Frequency of stop words . 66

4.1.16Average word length appearing in each comment after stop words

removed . 66

4.1.17Frequency of words . 67

4.1.18Frequency of words after remove punctuation marks 67

4.1.19Word cloud data representation 68

4.1.20Co-occurrence network of words 69

xiv

4.3.1 System Design . 71

4.3.2 BOW vectors for tow comments . 74

4.3.3 BOW after applying N-gram range between 1 and 3 75

4.3.4 TF-IDF representation for two comments 76

4.3.5 Word2vec models for different domain 77

4.3.6 The three main processes in system design 80

4.4.1 confusion matrix for the five SATD classes 81

6.1.1 RF and TF-IDF performance metrics for each type of SATD in

Adataset . 92

6.1.2 The accuracy of classic machine learning with TF-IDF and USE

for Adataset . 93

6.1.3 RF and TF-IDF performance metrics for each type of SATD in

Mdataset . 94

6.1.4 The accuracy of classic machine learning with TF-IDF and USE

for Mdataset . 96

6.1.5 RF and TF-IDF performance metrics for each type of SATD in

combined dataset . 97

6.1.6 The accuracy of classic machine learning with TF-IDF and USE

for combined dataset . 98

6.2.1 SLCNN and BERT performance metrics for each type of SATD in

Adataset . 99

6.2.2 The accuracy of single-layer CNN with TF-IDF and pre-trained

models for Adataset . 101

6.2.3 SLCNN and Word2Vec performance metrics for each type of SATD

in Mdataset . 102

xv

6.2.4 The accuracy of single-layer CNN with TF-IDF and pre-trained

models for Mdataset . 103

6.2.5 SLCNN and Word2Vec performance metrics for each type of SATD

in combined dataset . 104

6.2.6 The accuracy of single-layer CNN with TF-IDF and pre-trained

models for combined dataset. 105

6.2.7 MLCNN and BERT performance metrics for each type of SATD in

Adataset . 106

6.2.8 The accuracy of multiple-layer CNN with TF-IDF and pre-trained

models for Adataset. 107

6.2.9 MLCNN and SLCNN results for Adataset 107

6.2.10Chart MLCNN and SLCNN results for Adataset 108

6.2.11MLCNN and BERT performance metrics for each type of SATD in

Mdataset . 108

6.2.12The accuracy of multiple-layer CNN with TF-IDF and pre-trained

models for Mdataset. 110

6.2.13MLCNN and SLCNN results for Mdataset 110

6.2.14Chart MLCNN and SLCNN results for Mdataset 111

6.2.15Exclude on merge four strategy . 114

6.2.16The accuracy of all classifiers with TF-IDF,USE and pre-trained

models for combined-2 dataset. 116

6.3.1 Nemenyi test Shows the p values for each pair 118

6.4.1 . 121

6.4.2 Confusion matrix for MLCNN with BERT model for Adataset . . 121

6.4.3 Confusion matrix for RF with TF-IDF for Mdataset 122

8.1.1 Database ER-Diagram . 136

xvi

8.2.1 Home Page part 1 . 137

8.2.2 Home Page part 2 . 137

8.2.3 Home Page part 3 . 138

8.2.4 Information of participant . 138

8.2.5 Classification page . 139

xvii

List of Tables

3.1 Summary papers that related to this thesis 49

4.1 Number of new collected comments 52

5.1 Environment setup . 85

5.2 Unique words with special terms 87

5.3 Unique words without special terms 87

6.1 ML performance metrics with all classifiers for Adataset 92

6.2 ML performance metrics with all classifiers for Mdataset 95

6.3 ML performance metrics with all classifiers for combined dataset 97

6.4 SLCNN performance metrics with all pre-trained models and TF-

IDF for Adataset . 100

6.5 SLCNN performance metrics with all pre-trained models and TF-

IDF for Mdataset . 102

6.6 SLCNN performance metrics with all pre-trained models and TF-

IDF for combined dataset . 104

6.7 MLCNN performance metrics with all pre-trained models and

TF-IDF for Adataset . 106

6.8 MLCNN performance metrics with all pre-trained models and

TF-IDF for Mdataset . 109

xviii

6.9 ML classifier for combined-2 dataset after exclude requirements

TD from Mdataset . 114

6.10 SLCNN for combined-2 dataset after exclude requirements TD

from Mdataset . 115

6.11 MLCNN for combined-2 dataset after exclude requirements TD

from Mdataset . 115

6.12 Average ranking sorted descending for all classifiers 117

1

Chapter 1

Introduction

The software industry faces many conflicting goals that must be dealt with, such

as delivering in a short period, software maintenance, high-quality software,

and on budget. These goals lead the developers to workarounds, make wrong

or unhelpful technical decisions to submit their work. The short-term plans are

usually satisfied, but the long-term are impacted negatively with an increased

cost when be paid off [23]. Thus, in practice, the developer starts the technical

debt life.

Technical Debt (TD) is a metaphor coined by Ward Cunningham [12]. It re-

flects the additional cost that implies rework caused by a sub-optimal solution

instead of using the better software development life cycle approach. The con-

cept of TD is derived from financial debt, as the interest resulting from the late

payment. Like the financial debt, TD has an interest, and the cost increases if

not pay the debt early by refactoring the code at the appropriate time to avoid

interest in the future.

Technical debt is extremely correlated with immature software and issues in

software development, such as requirement debt that measures the difference

between the requirement specification and the actual software implementation.

2

Design debt refers to the violation of the good design principle, where code debt

includes poor maintenance and readability that needs to be refactored. Docu-

mentation debt which expresses on the lake of information that describes the

code, and finally test debt that describe the shortage of accepted testing [12].

Some previous studies have presented that technical debt is spreading widely

in software, which is inevitable and may have an effect on the software qual-

ity[36].

The developers’ accumulation of technical debt may be deliberately or in-

advertently. Often it was inadvertently [47]. Inadvertently TD occurs when the

developers afford the debt without intentional, for example, when the developer

writes a code with low quality because of insufficiency of experience. Further-

more, deliberately TD occurs with the intention of developers, in a particular

situation when the project manager decides to release the software early. When

the developers admit these issues and are documented often by comments in the

source code files, technical debt takes the name ’Self-Admitted Technical Debt’

(SADT). This term was first coined by Potdar, and Shihab [53]. It is a technical

debt that is written by the developers deliberately, through comments or com-

mits messages, with the knowledge that the implementation is not an optimal

solution for the software.[28]

Recently, and after the self-admitted technical debt term introduced [28], re-

searchers focused on SATD in more than one direction. Most of the directions

can be reduced to three categories, as have introduced in [58]. The first direction

is detection: which focuses on identifying or detecting the SATD in source code

comments. The second is comprehension: those studies focus on the relation

of SATD with different aspects of the software process. The third is repayment,

which includes the studies with the aim to investigate tools and techniques to re-

move ’fully repay’ or mitigate ’partially repay.’ Wehaibi et al. [63] assert that the

3

proportion of SATD in the project may have a negative effect on the complexity

of software. In addition, they discovered that files of the source code that in-

cluded self-admitted technical debt have more bug fixing changes, whereas files

that not contains SATD have more defects.

Some other studies take into consideration the commit messages to investi-

gate the effect and relation with SATD. Yan et al. [68] introduced the level of

change in self-admitted technical debt determination. This model determines

whether the change introduces SATD by using the versions of the code com-

ments, identifying the SATD at file level for each version, and analyzing and

extracting information from a message in commits written by the developers to

predict if the commit is related to SATD.

This thesis aims to develop an automatic system that identifies the SATD

comments and commits that are written by the developer. The system classi-

fies the SATD comments into five categories: defect, design, documentation,

requirement, and test. This study investigates the effectiveness of Natural Lan-

guage Processing (NLP), machine learning, and deep learning techniques for

automatically identify SATD from source comments and commits. The NLP

involves pre-processing the source code comments defined as SATD, then ex-

tracting the features from the comments using two approaches; count-based

and semantic representative. For the count-based approach, the TF-IDF method

was used. The semantic-based features extraction uses a word embedding ap-

proach and pre-trained models trained in large universal vocabularies such as

word2vec, GolVe, BERT, Fasttext, and specific software engineering models. In

the last step, the classic machine learning (ML) algorithms were used, which

include: Naive Bayes (NB), Random Forest(RF), and Support-Vector Machines

(SVM). Additionally, state-of-the-art neural network techniques known as deep

learning (DL) will be used that include Convolutional Neural Network (CNN),

4

aiming to classify the comments into five classes indicating the type of SATD.

The types of SATD include requirement debt, design debt, defect debt, test debt,

and documentation debt.

1.1 Motivation

Software quality is one of the most critical aspects for the software company

and customers. The development team has various ways to ensure the quality

of software for different purposes. One of these purposes is to measure how the

software compatible with the software engineering principle at the code-base

level by using static analysis of source code. Code smell, bad code, dirty code,

technical debt, and other terms appear in software development fields, indicate

the immature software and need more effort and work to increase the quality of

the software. For example, when the developer writes a bad code or violates the

design principle, it is better to document the violation by self-admitted technical

debt forward to refactor the source code in the future. There are some tools that

are used to analyze the source code to find the violation and code smell. These

tools depend on the predefined rules and structure without investigating the

logic of the code as humans do. This motivates us to develop an automatic sys-

tem for identifying the technical debt that the developer admitted by him/her-

self. Usually, the developer writes comments in natural language. The proposed

system uses the Natural Language Processing (NLP) techniques to analyze and

understand the developer’s intents. Then a machine learning classifier identifies

the comments to the five most important categories of self-admitted technical

debt. With the knowledge gained from the literature review chapter, the moti-

vation of this study is to fill the gap in SATD identification by investigating more

effort in the dataset used, NLP techniques, and machine learning approach for

5

classification SATD. Most studies used the same dataset that was introduced by

Maldonado et al. [59] to identify the comments to SATD or not. These studies

did not consider the types of SATD. The pre-trained models were used in this

study; they trained on universal context and specific software engineering do-

mains and used state-of-the-art deep learning techniques such as Convolutional

Neural Network (CNN) with different feature engineering models.

1.2 Problem statement

Self-admitted technical debt is an express written by the developer in the file

of source code. It describes the code or part of code written by the developer

without considering the optimal way. These technical debts need to manage

and remove as possible. The aim of managing the technical debt is to pay the

interest on time to avoid more accumulated interest in the future. The first step

is to identify the technical debt types to know how to treat them in specific filed

that appear, including (Requirement, design, test, defect, and documentation),

since the comments that indicate the technical debt are written by using natural

language. This leads us to process these comments by using NLP techniques

to represent the meaning of the comments sentences. Additionally, machine

learning and modern deep learning techniques are adopted to classify the types

of SATD.

1.3 Research contributions

This thesis achieved the following contributions.

6

1. Collected a sufficient dataset with 1758 commits and 3102 comments used

in previous studies and extracted 222 comments from two open-source

android applications. All the comments and commits are labeled as SATD.

2. Classified the SATD into five types that include (requirement, design, test,

defect, and documentation) using a multi-classification model for cross-

project. This approach is different from previous studies that used binary

classification and classified SATD into only two types(Requirement and

design).

3. Manually annotated part of the collected comments with a help of soft-

ware engineering experts. The comments that belong to the considered

five SATD types are used in this study.

4. The NLP word embedding representation techniques were used with pre-

trained models such as Word2vec, BERT, Glove, Fasttext, and pre-trained

specific model in software engineering context as described in [16].

5. Deep learning technology was used, such as Convolutional Neural Net-

work (CNN) to classify the input comments into the SATD five categories.

6. The proposed system was evaluated by using two datasets, and compared

the results with the results published in the previous similar studies.

1.4 Research Questions

1. How well the NLP pre-trained models can improve the identification of

self-admitted technical debt from source code comments and commits ef-

fectively?

7

2. How well machine learning algorithms that include (SVM, NB, RF, and

CNN) can automatically classify the five SATD types efficiently?

3. How well combined the two datasets improve the classification accuracy?

4. Does increasing the numbers of layers in CNN model improve the accu-

racy of the study approach?

1.5 Structure of thesis

The rest of thesis is structured as follows:

Chapter 2 : presents the background about main content of study, that include

self-admitted technical debt, NLP, deep learning, machine learning, pre-trained

models.

Chapter 3 : discusses literature review related to technical debt, SATD identifi-

cation and classification.

Chapter 4: provides complete details about the research methodology.

Chapter 5: presents the experiment setup, the tools used in experiments, the pa-

rameters of classifiers, pre-trained models specification.

Chapter 6: presents the experiments results, discussion of the results, and statis-

tical test.

Chapter 7: provides conclusion, future works and threats to validity

8

Chapter 2

Background

The Background chapter discusses the definition of technical debt, self-admitted

technical debt, and reviews the details of the automatic text classification, in-

cluding natural language processing and machine learning techniques. Natural

language processing has text pre-processing to clean the text and feature extrac-

tion to convert the words into vectors, such as bags of word(BoW), TF-IDF, and

word embedding. In addition, the word embedding models pre-trained on the

billions of words such as Word2vec, Glove, BERT, and Fasttext. Moreover, three

types of machine learning are discussed; statistical classification such as Naive

Bayes classifier, functional classification and neural network classification that

include modern approaches in deep learning classification depending on the

neural network such as Convolution Neural Network (CNN).

2.1 Technical debt

Technical Debt (or TD) is a description of immature software because of its con-

tainment of the issues that occurred by a developer intentionally, when they

postponed fixing the issue to the future, or unintentionally since lack of knowl-

edge. Technical Debt is a metaphor coined by Ward Cunningham [12], and he

9

considers “not quite right code” is technical debt. The concept of TD is derived

from financial debt, as the interest result from the late payment. Like the finan-

cial dept, TD has an interest, and the cost increases if not paying the debt early

by refactoring the code at the appropriate time to avoid interest in the future.[12]

2.1.1 Self-admitted technical debt

Source code comments are explanation or annotation that written by the devel-

opers. Comments allow developers to clarify, document and express concerns

about implementing an informal method that does not affect the program’s

functionality. These comments are generally ignored by compilers and inter-

preters.[37]

Self-Admitted Technical Debt (SATD) is the source code comments written

by a developer in the source code file and indicates an issue in the code. The

term self-admitted technical debt is introduced the first time by Potdar and Shi-

hab[53]. There are various types of TD described by the comments (SATD). For

example, design debt is the comment that indicates long methods, lack of im-

plementation, poor abstraction, misplaced code, and workaround or temporary.

“TODO: - This method is too complex, lets break it up” - [from ArgoUml] “/*

TODO: really should be a separate class */” - [from ArgoUml]

Technical debt, SATD and their types are described in details in chapter 3

’Literature review’.

10

2.2 Text classification

Text can be classified in two different ways: manual or automatic classification.

Previously, a human read the text, interprets the content, and categorizes it ac-

cordingly. This method can usually provide good results, but it is expensive and

time-consuming. While, the automatic classification that uses natural language

processing and machine learning techniques can be transferring the text classi-

fication into new areas fastly, more cost-effective, and more accurate way[13].

The automatic text classification passes in two phases; NLP and machine

learning. In the first phase, the text is cleaned and normalized. Then represen-

tative feature vectors are extracted from the words of sentences that indicate the

relationship between the word meaning and context. The resulting vectors are

understandable by the machine. In the machine learning phase, the machine

learns how to make the classifications based on past observations. Machine

learning algorithms use the pre-labeled data for learning, and they can conclude

different associations between pieces of text[37].

2.2.1 Natural Language Processing (NLP)

NLP is the artificial intelligence field that makes the computer understand and

process the human language by converting the text into a mathematical form

that can be treated by the machine [46]. NLP is used in different domains of

the industry. This thesis will be focused on the software engineering domain.

In any software project, many documents are produced within the project it-

self, whether before constructing the project, during development or after the

11

deployment. These documents are written in the human language, such as re-

quirements, design documentation, use-case scenarios, bug reports, user manu-

als, commit messages, etc. Along with the code comments, the developers de-

pend on all of these text data to build the software from the design to the testing.

Lastly, many resources enter the software engineering domain research by ana-

lyzing textual information such as stack overflow, app market, user review, etc.,

to support the development activities. In other words, gain new insights and

extract the knowledge[5]. Natural language processing tasks involve syntactic

and semantic analysis that is used to make a machine understand the text[46].

Syntactic analysis : Also known as syntax or parsing. It analyzes the text

with the rules of a formal grammar, and identifies the relations between the

words, and represents the text on a diagram such as a parse tree[46].

Semantic analysis : Is the process of extracting the meaning from the text

sentences , and analyzing the relationship between each word and related con-

text , in attempting to understand and discover the meaning of the text.

2.2.2 Text Pre-processing

The pre-processing task is the phase of preparing and cleaning the text data

by remove the words and accessories, that do not add any meaning to the text

such as: remove tags, numbers, punctuation and stop-words. Additionally, the

preparing data include[49].

• Case folding : Convert the characters of words to small letters.

• Tokenization : Is a way to split the text into smaller units called tokens, it

can be either statements, words, sub-words, and characters.

• Spell Check : is a checking the style and grammar correctness of a text.[13]

12

• Stemming : Is a method for removing common inflectional endings from

words in the English language. Porter stemming algorithm is one of the

common algorithms used [52].

• Lemmatization : This process is the same stemming, but instead of remov-

ing inflectional ending of the words, it uses lexical knowledge bases to get

the meaningful base forms of words. The lemmatization gave the best re-

sult for information retrieval in comparison study with stemming[6].

• Contraction : The way that convert the contraction words to expansion

form (i.e. aren’t become are not)

• Parts Of Speech (POS) tagging : Is the process to identify each word in

the sentences to know how a word is used in every sentence (noun, verb,

adjective, adverb.. etc).

• N-grams : Look the same way to tokenize, but in this way the split of text

is more than one size for each token, some words used together to give

specific meaning (e.g. calling method). When using these words individ-

ually, they carry a completely different meaning. Three common types of

N-grams used, unigrams when N equals to one, Bigrams (2-grams), and

trigrams (3-grams) [31].

2.2.3 Word representation

Word representation is aiming to represent a word in mathematical form, to be

understandable by the machine. This process is also known as a feature extrac-

tion or vectorization. The followings are the popular methods used for convert-

ing the words to numerical vectors:

13

2.2.3.1 Bag Of Word (BoW)

Bag-of-word is a representation model that counts the unique word occurrence

frequency in the text document. By this, each sentence can be represented as a

vector of numbers of the same length. The length of the vector is the same size

of the unique words in the whole dataset. If the word exists in the sentence, the

value of the vector is 1, if it duplicated in the same sentence the value is 2, and 0

when the word does not exist [29]. It is possible to apply the N-grams tokeniza-

tion during building the BoW, and the representation of words could be one

word or more. The BoW model is a way to represent the text to numbers. How-

ever, this model still has limitations. It can get extremely huge in the vocabulary

for the large text. This can lead to a huge size of vectors that represents each

sentence, which can result in poor performance. This model does not consider

the semantics or meanings associated with a token or phrases in the document.

It completely ignores the context in which a word or a phrase is being used, that

may capture the meaning from the neighborhood of words.

2.2.3.2 Term Frequency Inverse Document Frequency (TF-IDF)

TF-IDF is a common feature extraction technique to represent the text docu-

ment into a meaningful pattern by transforming the document into numbers

which are used to fit the machine learning algorithms. TF is statistical measure

to calculate the frequency of terms across the document. It appears like BoW

approach with different in accounting method the number of terms frequently

in the document. There are several ways for normalizing the frequency. The

most common way is dividing number of word occurs in a document by the

total number of words in all documents [29]. IDF measures the frequency of

words across a set of documents. It is used to calculate the importance of a term

14

and avoiding the terms that occur frequently without adding importance for the

meaning. IDF is calculated as IDF (w) = log(N/DF), where N is the number of

documents and DF is the number of documents containing word w [1]. In the

IDF just the opposite of TF is done. The weights of the important terms, which

have more meaningful but less frequency, are scaled up. On the other hand, the

less important terms with more frequency are scaled-down. But, that did not

happen in TF where it focused only on the number of times the terms occur fre-

quently in documents without considering the importance of terms. As a result,

the weight of word W in document D across the text corpus T is given by the

following TF-IDF equations[31]

TF(W) =
Number of times the word W occurs in a document

numbers of words in the document
(2.1)

IDFW = log
Total numbers of documents

Number of documents containing word W
(2.2)

weight(W,D) = TF(W,D) × IDF (W) (2.3)

TF-IDF provides an improvement over BoW, by scaling up the weights of the

less frequently words but they important. However, it still depends on syntactic

analysis without taking into consideration semantics, context associated with

words, co-occurrence of terms, and the representation vector is still large for the

huge vocabulary of the large text.

2.2.3.3 Word embeddings

Word embedding is different from the two discussed vectorization approach,

BoW and TF-IDF, word embedding is a language representation models. They

15

considered the neighborhood of the word, in terms of what words come after or

before the specific word. By considering the neighborhood of a word, it captures

the important information in terms of what context the word appears in a sen-

tence. This model supports the semantics and syntactic methods, by defining

the relationship between the word and neighborhood to discover the context of

word in the sentence. This model represents each word in sentences by a vector

with N-dimensional space. All the words that have the same meaning should

have similar representations. The focus will be on the most three popular tech-

niques of word embedding that are used in the set of experiments; Word2vec,

Glove, Fasttext, BERT, and software engineering Word2Vec pre-trained model.

2.2.3.4 Word2Vec

Word2vec was developed by Thomas Mikolov e t al. at Google [44]. It is a model

that uses contextual information with neighborhood consideration of words as

input to produce the word vectors as output. Word2vec is an unsupervised ma-

chine learning algorithm used for building pre-trained word embedding models

by clustering these word into vectors. It is not only one algorithm, but it includes

two learning models, Continuous Bag of Words (CBOW) that predict the target

word based on the context word, and Skip-gram predict the context word based

on the target word [38]. Figure 3.0.1 show tow models architectures.

The output of the Word2vec algorithm is a |V| * D matrix, where |V| is the

size of the vocabulary that generated from all words, and D is the number of

dimensions that represent each vector of the word. Each row in the embedding

matrix includes an individual word in the vocabulary, the number of dimensions

(D) can be changed and it relies on several factors. In real-world use cases, the

D takes value between 50 and 300[31].

16

FIGURE 2.2.1: Word2Vec models architectures [45]

There are pre-trained models that use the Word2vec algorithm and provided

by researchers in different domains. Google provided a Word2vec model that is

trained on a huge Google news dataset. The vocabulary size contains 3 million

words and phrases, and each vector has 300 dimensions1.

2.2.3.5 Glove

GloVe is a word vector technique that stands for Global Vectors introduced by

Pennington et. al. [51] It combines two models feature, that involve global ma-

trix factorization and local context window methods such as skip-gram model.

The GloVe model uses a co-occurrence matrix to make word embedding. Each

word represented in the row of matrix, and the context that the word appears

in represented in the column of the matrix (i.e. co-occurrence matrix: words x

context). The value of co-occurrence matrix is the count of a word that appears

in a given context. Then, the co-occurrence matrix is factorized to reduce the di-

mension and generate the lower-dimensional embedding matrix, each row is a

vector representation for each word. Pre-trained models for Glove available on

1https://code.google.com/archive/p/word2vec

17

2.The public domain model “glove.840B.300d” will be used, that includes 840B

tokens, 2.2M vocabulary, 300 dimension vectors, and the model size is 2.03 GB.

2.2.3.6 Fasttext

Fasttext is the state-of-the-art word embedding approach that working at character-

level. Fasttext introduced based on two studies [30], [9]. Which is essentially an

extension of word2vec model, but each word is broken down into character n-

grams. As a result, a word’s vector is made up of the number of this character’s

n-grams. For example, the vector of word “method” is a sum of the vectors of the

n-grams characters: “<me”, “met”, ”meth”, ”metho”, ”method>”, “eth”, “etho”,

”etho”, “hod”, ”hod>”, ”od>” . The "crawl-300d-2M.vec" will be used: 2 million

word vectors trained on Common Crawl (600B tokens) with 300 dimensional

vector 3

2.2.3.7 BERT

BERT is a language representation model, which stands for (Bidirectional En-

coder Representations from Transformers) that was introduced by Google [51].

To understand the BERT model, Let’s consider an example.

Survey Monkey, is an online survey system.

A Monkey is an animal.

Monkey testing is a testing methodology, where the input is random values.

2https://nlp.stanford.edu/projects/glove/
3https://fasttext.cc/docs/en/english-vectors.html

https://fasttext.cc/docs/en/english-vectors.html

18

In all of these sentences, no matter what context Monkey is being used in,

and the Monkey will be embedding the same. BERT solves this problem by rep-

resenting the word based on the current context it is being used in. Additionally,

BERT model, built using semi-supervised models to support reuse by fin-tuned

for specific task. In other words, a model developed on a broader task and it

can be reused as the starting point for a model on a second task. This method is

called transfer learning.

BERT was built using Transformer architecture that includes two mecha-

nisms, namely an encoder component to read the text input ,and a decoder that

outputs a prediction depending on the type of task such as classifications. BERT

uses two unsupervised tasks to build pre-trained models, these strategies are

masked language model (MLM) and next-sentence prediction(NSP). The MLM

BERT model selects 0.15 of the tokens randomly and masks them. Next, it tries

to predict the original value of the masked tokens, based on other context pro-

vided. This method is used in the classification task, because it deals with one

sentence. However, when tasks involve a pair of sentences, and the needing to

relationship between multiple sentences captured, as often used in question and

answer tasks. To do this task , BERT applies next-sentence prediction strategies.

A pair of sentences, A and B, are input to the BERT model, 0.50 of selected sen-

tences are actually the next sentence for each sentence. B would be actually the

next sentence in the original text ,and it comes after A, while in the other 0.50

of sentences selected randomly, and it is not the next sentence after A, and B

would be not actually the next sentence in the original text. The NSP model will

predict whether sentence B is actually the next sentence following sentence A or

not [31].

19

2.3 Machine Learning (ML)

Some of the most popular machine learning algorithms that used in text classi-

fication, fall into one of methods that include statistical classification, functional

classification and neural classification[39].

2.3.1 Statistical classification

The most used type of classification algorithm is the Naive Bayes classifier (NB).

Naive Bayes is not only one algorithm but a collection of supervised learning

algorithms based on applying Bayes’ theorem. These families of algorithms

apply a common principle of simple probabilistic classifiers. NB classifier as-

sumes ("Naively") that each feature is being classified as independent on other

features4. While, "Bayes” theorem finds the probability of the feature, based on

previous knowledge of situations that may be correlated with the feature5. The

Bayes’ theorem can be represented as following equation[31] .

P (A|B) =
P (B|A).P (A)

P (B)
(2.4)

Where A and B are events:

• P(A|B) is the probability of A given B, while P(B|A) is the probability of

B given A.

• P(A) is the independent probability of A, while P(B) is the independent

probability of B.

4https://scikit-learn.org/stable/modules/naive_bayes.htm
5https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier

https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier

20

Random forest is a supervised machine learning algorithm. It creates a "for-

est" out of an ensemble of decision trees, which are normally educated using

the "bagging" technique. The idea of the bagging method is that a combination

of learning models increases the overall result.Random forest has emerged as

a promising text categorization tool. Random forest is a common classification

method that combines a number of classification trees into a single ensemble.

Breiman suggested one of the most common forest construction procedures:

randomly selecting a subspace of features at each node to grow decision tree

branches, then using the bagging approach to produce training data. Then, us-

ing the bagging technique, create training data subsets for individual trees con-

struction, and eventually, combine all individual trees to form a random forest

model.[66]

2.3.2 Functional classification.

functional or (geometrical) classification, is representation of each document or

word as a dot in a multidimensional space where the number of dimensions is

equal to the number of features in the feature vector[39].

One of the simplest algorithm k Nearest Neighbours (kNN), it look around

the dot that represents the document being classified in the multidimensional

space, to find the k number of nearest neighbours to that dot. Then the kNN

classifies the new document to the category that most of nearest neighbours be-

long to.

Support Vector Machines SVM is other text classification algorithm that out-

perform , it is a supervised machine learning algorithm that try to classify data

by finding the optimal hyper plane that segregates between the classes of classi-

fication.The SVM is different from other algorithms by the method of finding

the decision boundary between the class. The best judgment boundary that

21

maximizes the distance to the both classes’ neighboring data points. Decision

boundary also called margin classifier or margin hyper plane. To understand

the SVM algorithm let’s take the following example.

Suppose have a balls basket with two types of balls in it with two features

about the balls ; weight and radius. SVM algorithm will be created to separate

between the kinds of balls. Therefore, this problem can be solved by represent

each ball as a vector in two dimensional space, and find the best line that segre-

gate the two types of balls as shown in the following diagram 2.3.1. In order to

identify a hyper plane , the equation can be as follows[31]:

W1 ∗ radius+W2 ∗ weight− C = 0 (2.5)

Where, W1 and W2 are coefficients and C is a constant.

FIGURE 2.3.1: Support vector machine for linear classification

This example shows the simple SVM used for linear regression and classifi-

cation problems in two dimensional space. Kernel SVM is algorithm that used

for linear and non-linear data, when there are more than two features to fit a

hyperplane in n dimensional space. This type commonly recommended for text

22

classification, and the equation of the hyperplane in the n dimension with liner

data can be generalized as follows:

f(X) = W t ∗X + c (2.6)

Here, W is a weight vector of coefficients and X(feature) represents each di-

mension of the space.

2.3.3 Neural network classification

The term of neural network mostly used with deep learning. In fact the deep

learning is a evolution of a machine learning, it is a subset of a machine learn-

ing. both of them laying under the umbrella of Artificial Intelligence (AI) .The

deep learning is designed with aim to analyze data continuously, and simu-

late the logical structure of human to how draws conclusions [32]. To achieve

this objective , deep learning algorithms use a layered design called an artificial

neural network that derived from the biological neural network of the human

brain.Two types of neural network discuss in following

2.3.3.1 Artificial neural network (ANN)

Artificial Neural Networks (ANN) are a set of Neurons organized in multi layers

and fully connected with each others. The synapses that connect the neurons

usually have weights that adjust during learning proceeds. ANN also known

as a Feed-Forward Neural network, because the data are input into ANN layers

are processed only in the forward direction[26].

23

To understand the ANN let’s consider a set of features represented by X

equation 2.7. A set of weights, W as shown in equation 2.8:

X = x1, x2, x3,, xn (2.7)

W = w1, w2, w3,, wn (2.8)

Then for each neurons in the hidden layer will apply the following equation:

z = x1.w1 + x2.w2 + x3.w3....+ xn.wn + b (2.9)

The ANN boils down in figure2.3.2.

FIGURE 2.3.2: ANN with four input neurons and b input called a
bias that allows the model to fit the data better,one hidden layer

consisting of three neurons, and one target neuron output

As shown in figure 2.3.2, three layers used in neural network :

• Input layer : In this layer the input is features, and the number of features

is equal the number of nodes or neurons that will fed to the network.

• Hidden layer This layer is located between input and output layers, and it

24

can be one or more layers, each layer have number of nods, the computa-

tion don in this layer to extract the pattern of data. Number of layers and

nodes considering hyperparameter that need to be tuned, and depending

on the complexity of the shape that need to find the decision boundary.

• Output layer The output layer provide a result for a particular input. The

number of node in this layer depends on the type of classification problem

that being solved, in the binary classification only one node needing 0 or

1 to determine to which category the input belong. However, for multi

classification the number of nodes must equal to the number of classes.

Before the output layer in neural network model as a final step, the activation

function is being calculated to offer a powerful way to find the decision bound-

ary especially for non-linearity equation in any dimensional space. There are

various types of activation functions, the most commonly three types described

in the following.

2.3.3.2 Activation functions

Sigmoid: This activation function transforming the output into a range between

0 and 1.[31] It define as following equation 2.10, and the curve shown in fig-

ure.2.3.3

S(x) =
1

1 + e−x
(2.10)

Hyperbolic tangent (tanh): Tahn converts the input values within the range

of -1 to 1 [31]. Than equation 2.11, and curve in figure 2.3.4

tanh(x) =
ex − e−x

ex + e−x
(2.11)

25

FIGURE 2.3.3: Sigmoid activation function

FIGURE 2.3.4: Tanh activation function

Rectified linear unit (ReLU): ReLU is a very simple activation function which

does not require complex computations, and mostly common activation func-

tion used, it outperform the sigmoid and tanh[27]. The formula 2.12 and the

curve 2.3.5 shown in following :

R(x) = max(0, x) (2.12)

26

FIGURE 2.3.5: ReLU activation function

2.3.3.3 Convolutional Neural Network (CNN)

CNN is a complex and modern architecture for artificial neural network (ANN).

The main usage of CNN was for computer vision tasks, analyzing and process-

ing data that has a grid pattern, such as images [48]. The image consist from

a pixels, the representation of these pixels by converting the image into matrix

with values that indicate the intensity of that pixels.Then CNN applying multi-

ple filters also known as kernels in convolution layer.These filters have a weights

that the network update in order to capture patterns and produce a feature map.

However, The same CNN architecture applied with NLP to dive in text process-

ing and classification. Figure 2.3.6 show the CNN model dealing with text data.

• Convolutional layer This is the first layer in CNN model. The sentence

is represented as a matrix of vectors one for each word. For example, the

sentence " This method is too complex" is represented by a matrix of five

vectors of size 5, i.e. the word ’this’ is represented by 5-dimensional vector,

word ’method’ is represented by a 5-dimensional vector, and so on. This

result in a matrix of size 5x5. In the Convolutionl layer, multi filters (ker-

nels) are applied, and an element-wise multiplication is performed and

27

FIGURE 2.3.6: Convolutional Neural Networks for Sentence
Classification by Yoon Kim. [32]

then sum the result. See example in figure 2.3.7.

FIGURE 2.3.7: Example convolution operation in 2D using a 3x3
filter. The filter move one step for each operation and add the
result in the feature map. then, the filter slide to the right and

perform the same operation down.

• Stride and padding In certain situations, the size of the feature map will

be equal to the size of the input matrix, and this depending on the type of

data. Stride is how much the filter move for each step, the default value

is 1 as shown in previous example 2.3.7. When stride value increase, the

28

resulting of feature map get smaller, and some potential locations are ig-

nored. In contrast, padding technique that surrounding the input matrix

with zeros to obtains same dimensional for feature map after applying the

filter.

• Pooling layer Pooling is the next step after the convolution operation. The

objective of the pooling layer is to reduce the computation process as min-

imal as possible, and keep capturing the most important information as

much as possible.

There are various types of pooling, to understand these types, the follow-

ing figure2.3.8 shows the matrix with stride 2 and 2x2 window without

overlap as shown in

FIGURE 2.3.8: Matrix with stride 2 and 2x2 window

– Max pooling: This technique is mostly used in pooling layer, it take

the maximum value for each filter window as shown in figure 2.3.9

FIGURE 2.3.9: Max pooling

– Average pooling: It take the average of 2x2 window.figure2.3.10

29

FIGURE 2.3.10: The averages rounded to the nearest integer.

– Sum pooling: This technique just take the sum of the values for each

window, as shown in figure. 2.3.11

FIGURE 2.3.11: Sum pooling.

• Fully connected layer The convolutional and pooling layers extract the

features from the input data, the fully connected layer takes these extracted

features to get the final classification results. It is the same functionality

that happens in ANN fully connected layer.

30

Chapter 3

Literature review

The literature review chapter discusses the metaphor of technical debt meaning

in a software engineering context and the definition of self-admitted technical

debt, and the extension of term over time by the developers as using the techni-

cal debt to workarounds optimal solutions and adopting the sub-optimal. The

literature review provides brief information summarized that gather from dif-

ferent resources that include research papers, books, articles, and websites. This

information ranges from the appearing the term of technical to the current date

in chronological order. The figure shows the spiral method adopted for this the-

sis in literature writing.

3.1 Technical Debt Metaphor: Definition and Expansion

Technical debt is a metaphor that was introduced by Cunningham [12] in 1992.

Cunningham considers “not quite right code” is technical debt, and explained

how the sub-optimal or not complete solution by adopting the short-term would

affect the maintainability, which requires more effort in the future, which is what

the interest does on incurred debts.

31

FIGURE 3.0.1: literature review workflow

The term of technical debt continued to refine and expand, Steve McConnell

divided the technical debt into two types, intentional debt, and unintentional

debt [43]. The first type mostly occurs when the company makes a decision to

get the release done and working, without taking into consideration the future,

for example, “We don’t have time to build in general support for multiple plat-

forms. We’ll support iOS now and build in support for Android, etc., later.”

or “We didn’t have time to write unit tests for all the code we wrote the last 2

months of the project. We’ll write those after we release.”[43]. Moreover, two

types of intentional technical debt, short and long term, as with actual debt.

Short-term debt is considered on reactively and tactically, commonly as a late

stage measure to get a particular release out the door. While long-term debt

is strategically incurred , for example “We don’t think we’re going to need to

32

support a second platform for at least five years, so this release can be built on

the assumption that we’re supporting only one platform.”[43]. This implies that

short-term debt must be repaid immediately, maybe as a first version of the next

release cycle, while long-term debt can be repaid for a few years or longer.

The unintentional debt is the non-strategic result of the bad implementation;

this debt commonly occurs with insufficient knowledge and experience, that

range between design to a junior developer who writes smell code unintention-

ally [43].

Otherwise, Martin Fowler [21] introduced four quadrants types of technical

debt, reckless, prudent, deliberate and inadvertent.

Reckless inadvertent debt : The team in this situation there has no choice

about incurring the debt (eg. not aware of design practices), either does not

know it or if the debt exists the team can not correct it, so the team should stop

development and develop itself, to know the technical debt types and effect

to allow them to make a rational decision about whether or not it is wise to

continue with.

Reckless Deliberate debt : This kind of debt occurs with previous knowl-

edge that the team incurring the debt, but they choose to go “quick and dirty”

instead of writing clean code because they assume that they can not afford the

time to do so.

Prudent Deliberate debt : In this case shortcuts quality made by the team

consciously because of an imminent deadline. The team knows about the debt

and its consequences, and commonly adds its correction to the backlog, but this

time the focus is on the delivery rather than quality. Prudent inadvertent tech-

nical debt : This case represents the over quality of the project, where the team

has the skill to applying the best design and development, that satisfying the

requirements, but over time there becomes a difference between what has been

33

built and what is required, because of the deep in understanding of the system,

and this lead to falls into the technical debt within the category of prudent

Figure 3.1.1 presents the technical debt quadrant, each quadrant illustrates

the situation that can arise while a team is working on a software project.

FIGURE 3.1.1: Technical Debt Quadrant [21]

Alves et al [3].Proposed an initial taxonomy of technical debt types and strate-

gies to identify and manage TD. In this study, the focus will be on the five types

of TD and their definition. Nicolli found in her systematic mapping study the

following types of debt in the literature, and he provided the definition of this

kind

• Design debt: The violation of the design principle of good object-oriented

design, it can be found through analyzing the source code.

• Documentation debt: When the software has a problem in documentation

such as inconvenient, or incomplete of any type of documenting.

• Test debt: The issues that affect the software quality and related to the

tests. Example of this type, lack of test coverage.

34

• Defect debt: Indicates to the known defects and defined by the users as a

bug or by the team itself, and it has been agreed that should be fixed, but

since the limited resources and other priorities , have to be delayed until

later.

• Requirements debt: It indicates the trade-offs made regarding what re-

quirements the team necessarily to implement or how they are imple-

mented. Such as partially implemented requirements, fully implemented

but not satisfied all non-functional requirements.

Additional types of debt include code debt, service debt, infrastructure debt,

usability debt, people debt, process debt, build debt, test automation debt, and

Architecture debt: that refer to problems faced in system architecture, such as

violation of modularity that may be effective on the quality attributes (perfor-

mance , robustness , etc..). This kind of debt is not paid easily, because the fix is

not at the level of refactoring the code,but rather more extensive development

activities.

3.2 Identification of Technical Debt through code-base

This study will focus on TD identification. That is the first step in technical debt

management forward to removing this debt. More strategies to identify TD, ei-

ther human-based such as source code analysis or automation static analysis,

include two types of code smells and issues. Code smells can be identified as

design debt. Fowler and Beck [22] first introduce the bad smells (code smells)

term and the code smell described as the pattern that is less than ideal and vi-

olates the rule of object-oriented design and should be refactored. The authors

35

suggested continuous refactoring by reviewing the code and identifying code

smell during development.

Yamashita and Munin [67] studied the interaction between 12 code smells

and analyzed the relations between this action and how related to the mainte-

nance of the project. The investigators found empirical proof proved that inter-

smell relationships were correlated with problems during maintenance. Soltan-

ifar et al. [60] In order to generate defect prediction models, data science and

analytics techniques were investigated. The consequence was that code smells

are a strong indicator of defect proneness in the software. Furthermore, this

literature indicates that at least an associative association between code smells

and maintenance and the connection between TD and maintainability has been

identified, which lead to the use of code smell detection as an approach to TD

identification.

Other kinds of identify TD are commonly used in literature automated static

analysis, that extraction information about software from its source code us-

ing automatic tools[8]. These tools search for the issues that violate program-

ming practices, that might cause faults, and negatively impact software quality

(e.g., performance, maintainability). The automated static analysis issues at the

source code line level are generally more accurate than code smells at the class or

method level. That study indicates little overlap between issues and code smells

methods when used to identify technical debt.[70] Issues should be eliminated

by refactoring to prevent problems that might arise in the future and accumulate

these issues constitute technical debt. Sonarqube (https://www.sonarqube.org/)

is one of the popular open-source automated code-based static analysis tools,

both adopted in academia [33] and in industry [61]. It supports more than 27

languages and is used by more than 85K organizations, and supports CI/CD

36

integration. It is important to note that the concept of code smells used in sonar-

qube does not refer exactly to code smells defined by Fowler et al.[22]Sonarqube

rules for classified the code smells when the violation of (long method, large

class, duplicated code, and long of parameters). [34].

3.3 Identification of Technical Debt through Source Code

Comments (Self-Admitted Technical Debt)

The previous section discussed the approaches that used to detect technical debt,

whether human-based analysis that manually inspection in the source code to

find the poor code that violate the recommended practices development princi-

ple and form it in technical dept, or automated static analysis code-based tech-

nique, that in most case adopting rules to detriment the code smells and issues,

the Sonarqube is an example tool as mentioned above. Identification and man-

agement of technical debt are considered an open challenge. On the other hand,

Potdar and Shihab [53] were the first to analyze the comments in the source code

to identify the technical debt, and introduced the concept of “Self-Admitted

Technical Debt”. Unlike common static analysis code-based tools that depend

on predefined rules, metrics, and thresholds to expect debt, technical debt refers

to the code defective, incomplete, smell, or temporary, and intentionally written

by the developers (self admitted) with obvious recognition that implementation

is not optimal. These developers admitted by themselves that piece of code

is technical debt documented through comments. The authors explore source

code comments in four open-source projects to study the amount of SATD used

in these projects. They also investigated why the developers used this debt in

the projects and how the SATD was removed from the projects. The result was

SATD exists in 0.024 - 0.31 of the files, most of the SATD was introduced by the

37

developers with higher experience, and there is no relation between SATD and

time constraints and code complexity. Finally, 0.263 - 0.635 of SATD is removed

from projects after being presented.Moreover, in this study, Potdar and Shihab

introduced 62 patterns to indicate the SATD, through manually reading 101,762

comments to define patterns that indicate SATD.[53]

This approach allows detecting the SADT simpler than manual inspection of

the comments, but the number of projects used may be limited to generalization

to detect SATD in other software systems. Additionally, the technical types are

not defined in this study.

Consequences on previous work , Maldonado and Shihab [41], used five

open-source projects and manually inspected and read through source code

comments of 33K comments, to explore the type of SATD, the result was in-

troduced five types of technical debt, requirement, design, defect, test, and doc-

umentation debt, most of them was design debt, and dataset includes comments

classified to these five kinds of technical debt. The authors adopted the measure

of classification as follows:

• Self-admitted design debt : Comments that include problems with the

design of the code. The comments that indicate lack of abstraction, long

methods, bad implementation, misplaced code and workaround or tem-

porary. For example “TODO: - This method is too complex, lets break it up”

- [from ArgoUml] “/* TODO: really should be a separate class */” - [from Ar-

goUml]

• Self-admitted defect debt : The comments describe the part of code that

has a problem in expected behavior, in other words it has a defect in code.

" // Bug in above method” - [from Apache Jmeter]" “// WARNING: the Output-

Stream version of this doesn’t work!” - [from ArgoUml]

38

• Self-admitted documentation debt : The expression of comments that

lack of documentation describe the part of software. “**FIXME** This func-

tion needs documentation” - [from Columba]

• Self-admitted requirement debt : Incompleteness of program, class or

method. Additionally, the requirement which are implemented, but does

not absolutely satisfy all the non-functional requirements (e.g. perfor-

mance ,security, etc.).[4]

“/TODO no methods yet for getClassname” - [from Apache Ant]

• Self-admitted test debt : The comments that express need to improve cur-

rent tests or implement new tests . “// TODO - need a lot more tests” - [from

Apache Jmeter]

The authors in this study depended on the manual classification, by reading

a large amount of comments, the first author who classified all comments that

take 95 hours [41] may lead to bias, but the definitions of the types self admitted

technical debt and supporting by example as appear above are convincing.

Freitas Farias et al. [23], Introduced the Contextualized Vocabulary Model

CVM-TD, the aim of the study was to identify the different types of SATD in

comments of source code, the CVM-TD model depends on identifying the classes:

nouns, verbs, adverbs, and adjectives, that used by developers such as “TODO,

FIXME”, and related to software engineering concepts, the goal of applying

model is to identify the contextualized structure of terms for supporting the

detection of different types of TD through comment analysis relies on TD vo-

cabulary provided by the model. The evaluation of the model showed that com-

ments that returned by the model were different from the comments which were

evaluated to contain the SATD. This results in low detection performance and

39

needs to enhance how classes of words are mapped to various types of SATD to

enhance the model.

Bavota and Russo [7] introduced differentiated replication of the work by

Potdar and Shihab in [53] with large scale. The study was run on 195 software

projects, with 600K commits and 2 Billion comments , to investigate the spread

and evolution of SATD, and the relation between these debts and software qual-

ity. The main results showed that SATD are distributed in an average of 51 in-

stances for each system. Moreover, even when fixed this debt, it survives a long

time on average more than 1000 commits. Additionally, there are other studies

examining the relationship between the SATD and quality of software. Wehaibi

et al. have been investigating whether the files that include SATD have more

chance to include defects in comparison to the files that not include SATD, and

the changes in the SATD introduce defects in the future. The result of study pre-

sented that the self admitted technical debt in addition to the negative impact

on the system, it related to defects, and it making the change more complicated

in the future.[63]

From another side, Maldonado, Everton da S. et al [42]. Studied five open

source projects to examine who removed SATD, how much removed from and

how long SATD live in the project. The authors extract the comments from the

project using open source library SrcML, traced the comments in all versions of

the system for each project, and adopted the natural language processing (NLP)

based technique, that proposed by Maldonado et al.[59] to classify the comments

to technical debt. The empirical result for this study was the majority of SATD

comments are removed on average 0.749, most of SATD average 0.544 removed

by the developer itself who produced it, the life of SATD in the project was on

average 18.2–172.8 days.

The work mentioned so far gave a general idea about technical debt and self

40

admitted, and how the researchers investigate different fields starting from iden-

tification, management, evaluation, and removal. Next, the focus will be more

on the study goals and deep in recent literature related to the identification of

self-admitted technical debt. For any purpose to the treatment of self-admitted

technical debt, the identification is imperative as the first step, especially when

dealing with a large number of comments that need to classify to the techni-

cal debt or not. After that if there way to add more details to this classification

to know the types of this debt, when the reason of debt known such as there

is a problem in the requirements, the cause will know. Then, the problem can

handle quickly with less interest. Therefore, the focus will on the detection cate-

gory related to this study. Three areas of research found in the literature include

pattern-based approaches that depend on identifying textual patterns in com-

ments. The machine-learning approach depends on the automation techniques

such as NLP, machine learning classifiers. Finally, Deep-learning approaches

this based on more advanced techniques such as a neural network.

3.3.1 Pattern-based approaches

Reference to what discussed above Freitas Farias et al. [25],more investigations

are added to the previous work that introduced “Contextualized Vocabulary

Model” for identifying TD (CVM-TD) by Freitas Farias et al. [23]. The authors

extend the research [23]to characterize the factors that influence the accuracy of

overall TD identification by additional study and participate software engineer-

ing master students with different English skills and development experience.

The comments that generated from the CVM-TD model given to the three ex-

pert researchers to create an oracle of comments identify as technical debt, and

36 Software Engineers with different experience and English language skill level

41

to flag those suggesting of TD introduced from the model , 4 participants elimi-

nated from the experiment due to not complete all data needed. The experiment

result showed that the skill reading affects the identification TD, but the clas-

sification is not affected by the experience. On the basis of that, the CVM-TD

model’s output served the developers whether they had experience or not, the

average accuracy of 0.673 when TD comments are detected, which outperform

previous work;.[23]. Note in this experiment that it is still in the same scope

of the previous study, and it depends on the pattern of words in the comments

(e.g. "most memory consuming", "memory allocated") may refer to build issues,

without considering the meaning and sentiment for the whole comment.

Freitas Farias et al.[24] Proposed the work that applies, evaluates, and im-

proves previous work of contextualized patterns to detect SATD using source

code comments that analysis in the studies [23][25]. Three empirical studies

were performed to do that, 23 participants analyze pre-defined contextual vo-

cabulary patterns and score their level of importance in identifying SATD ele-

ments. A qualitative empirical study conducted for analysis and examine the re-

lationship between each type of debt and pattern. Finally, a feasibility study was

conducted using a new vocabulary, which was improved based on the results

of previous empirical studies, to automatically identify self-admitted technical

debt and the types of debt found in three open-source projects. More than 0.50

of the new patterns are critical to technical debt detection. The new vocabulary

was succeeded in finding items related to code, design, defect, documentation,

and requirement debt. The main contribution of this study was the identifica-

tion of self-admitted technical debt depending on the knowledge embedded in

vocabulary, which can be used to automatically identify and classify TD by an-

alyzing the source code comments.

42

3.3.2 Machine-learning approaches

Maldonado et al. [59] used NLP maximum entropy classifier (Stanford Classi-

fier) approach to automatically identify SATD from the comments, including

design and requirement TD . The authors used 10 open source projects, ex-

tracted 62,566 comments, and classified them manually to create a dataset with

five types of TD: requirement, design, defect, documentation, and test debt.

The experiment used 10 fold cross-project validation, 9 open-source projects for

training, and one project for validation. The result presented that the NLP im-

proved the identification accuracy compared with previous pattern-based de-

tection. The classifier scored an average F1-measure of 0.620 for design debt,

0.403 for requirement debt, and 0.636 technical debt without types. Addition-

ally, the study also provided top-10 lists of textual features that the developers

used as SATD, that means there is a variety of style of expression of the SATD.to

obtain a satisfactory size of comments for training stage. The dataset included

3,900 comments, and only 195 comments are necessary to be a design debt. For

requirement debt 2,600 comments and 52 comments classified as requirement

TD, it is possible to get high accuracy. So, using just 0.05 of the comments as

a requirement and 0.09 as design for training, the best performance was 0.80.

Moreover, when used 0.23 as training for both requirement and design, the best

performance was 0.90.

Flisar and Podgorelec [19]. Investigate in word embedding method and en-

hance feature selection to identify SATD. In this study, more than a million unla-

beled comments extracted from 360 open-source projects were used. These com-

ments have been used to build the word2vec model in semantic space. Then the

created model is used to detect similar features in comments. Three steps used

to enhance the feature selection, top k% of feature, cosine similarity between the

43

feature X and all other features, and each feature word that are most seman-

tically similar are selected and added to the feature list. For evaluation of the

experiment, the dataset used in [59] that includes 3,298 labeled comments, the

results achieved 0.82 of correct predictions of SATD. The authors expanded the

study to identification that comments belong into two classes whether SATD

is included or not, [20]. In this study, the same dataset in the previous study

was used, and it proposed a feature-enhancement approach and used three fea-

ture selection methods (CHI, IG, and MI), with three text classifiers algorithms

(NB, SVM, and ME). The main contribution of this paper was to build the word

embedding model that detects the semantic meaning in related words in the

comments using the Word2vec model. The feature selection method proposed,

by combining three methods of feature selection (CHI, IG, and MI) used in the

next step of learning algorithms to enhance classification results. The prediction

model achieved 0.82 of correct predictions of SATD.

Other studies adopted the text mining approach to identify and manage

technical debt. Huang et al. [28] introduced an automated approach to detect

SATD using text mining, the comments extracted from 8 open-source projects,

and used as training to predict the type of the comment in a new target project.

All comments have been pre-processed to extract features through applying

stop-word removal, tokenization, and stemming techniques. Vector Space Model

(VSM) is used to represent the comment as a vector. In VSM, a feature is viewed

as a dimension, and a comment is represented as a data point in a high-dimensional

space. To mitigate the curse-of-dimensionality problem that faced the study, a

feature selection, namely Information Gain (IG), was applied to select the top

0.10 useful features. The features selected to use as a train sub-classified on

each source project, for predict the label of comment for target project, these

sub-classifiers are trained using a Naive Bayes Multinomial (NBM) approach to

44

define the label of a comment depending on the number of involving features. A

combined classifier takes the vote for each comment per sub-classified to predict

the final classification (i.e. 5 sub-classifier predict SATD, and 4 predict not, the

final classifier result is SATD). The results of the experiment was, for each target

project, the best performance achieved in terms of F1-score, with an average of

0.737. In the same context, SATD detector tool proposed to automatically detect

SATD using text mining-based [37], its implementation for the previous work

[28]. This tool can be used as an Eclipse plug-in to identify SATD on Java code,

the back-end of this tool is a pre-trained composite classifier to detect SATD

comments. This tool will be used in this study to extract the comments from

open-source Android applications. Wattana Kriengkrai, Supatsara, et al [62].

Introduced an approach using N-gram IDF, with multi classification techniques,

and built a model that can identify a comment to design debt, requirements debt,

or non-SATD .Maldonado et al. [59] dataset that contains 62K Java source code

comments used in this study. For mitigating the imbalanced dataset, Instance

Hardness Threshold (IHT) approach used by determined threshold value to re-

move often useless samples that are misclassified, Random Forest (RF) machine

learning algorithm applied to classify target comments. The result of the ex-

periment was N-gram IDF outperform traditional techniques BOW and TF-IDF,

with the average F1-score values of 0.6474.

Zhe Yu et al. [69] Proposed Jitterbug framework with two methods for iden-

tifying SATD. The dataset proposed by Maldonado et al. [59] used. The first

type, “easy to find”, that can be detected automatically without human inter-

vention, because the comment has explicitly denoted that include the keywords

or pattern that relate to type of SATD such as “Todo", "Fixme". This approach can

find 0.20-0.90 of SATD automatically. The precision of identifying SATD close to

0.100, when using a pattern recognition technique. On average, those comments

45

cover 0.53 of the total SATD. Second type: “hard to find” is not easy to classify

and needs experts to accurately decide, and only humans can make the final de-

cisions, and it is still hard for algorithms. In this approach, supervised machine

learning is used to present the comment for the experts to identify SATD that is

not identified automatically. After that, the comments identified by the experts

reuse by update the model and continuous training.

3.3.3 Deep-learning approaches

Ren, Xiaoxue, et al [55]. It has proposed a Convolutional Neural Network (CNN)

technique to classify the comments to SATD or non-SATD. This approach in-

cluded four stages. First, in the training model, the source code comments are

used as an input with the corresponding label classified as SATD or not SADT,

then this model is used in the prediction stage to predict if the comment SATD

or not with given unseen label comments. Moreover, the trained model is de-

convolutional in keyphrase extraction to extract main phrases from the input

comments that lead to classification decisions into a set of intuitive SATD pat-

terns. The result of this study was, on average F1-score of 0.752 within-project.

The result for cross-project prediction indicates that the CNN model more gen-

eralizable than the text mining approach with limited training data. The CNN

learned model could derive SATD patterns more comprehensive than the 62

patterns identified in the study of Potdar and Shihab [53]. The contribution

of this study, substantial enhance text mining method within project and cross

project, by using CNN to identification the SATD from source code comments,

backtracking method designed to extract key phrases and the patterns of SATD

from the source code comments, which enhance the SATD classification results

with CNN model. Comprehensive experiments were conducted to evaluate the

46

performance and to generalizability and adaptability. Furthermore, the explain-

ability of the CNN learned model from SATD features and patterns.

Santos, Rafael Meneses, et al [57]. They evaluated a neural network Long

short-term memory (LSTM) model with Word2vec, for identification require-

ments and design SATD in the file of source code comments. The evaluation

was done by experiment using the dataset for 10 projects collected and labeled

by Maldonado and Shihab. The dataset was divided into two groups; the first

group contains 60,907 comments, and 2703 are design debt. The second group

includes 58,961 comments, 757 from them are requirement SATD, and the other

comments for tow groups without SATD. The independent variables were LSTM

, Word2vec model, and the dataset. Dependent variables were model prediction

represented by precision, recall, and f-measure. The results of classification us-

ing the leave-one-out cross-project validation process showed that:

• Without pre-processing the comments, and using Word2vec , the LSMT

achieved higher recall than Autosklearn, and Maximum Entropy , but

loses in precision and f-measure.

• With pre-processing the comments, and applying Word2vec, it had im-

provement in precision, and the f-measure.

• Without Word2vec , the result was 0.56 improvement in recall in the design

SATD classification.

• With Word2vec, the improvement in recall was approximately 0.36 in both

SATD types.

The summary of results for this study was: The LSTM model without Word2vec

achieved greater recall, but performed worse in precision and f-measure.

The same authors have another publication [56] that presents the same pre-

vious study, but the word embedding (Word2vec) excluded from this study, and

47

the result was : compared with two NLP approaches: auto-sklearn and maxi-

mum entropy classifiers. Average precision was improved by around 0.08 com-

pared to auto-sklearn and 0.19 compared to maximum entropy, however, the

LSTM model had worse results in recall and f-measure.

3.4 Identification of Self-Admitted Technical Debt Using

Commits Messages

Most of the studies that noticed during literature were focused on the source

code comments more than commits to the identification of SATD. From the stud-

ies that were used the commits approach to dealing with SATD, Bavota and

Russo [7] that mentioned in section 3.3 , and of the results, the number of SATD

comments are growing over time, and it takes more than 1000 commits on av-

erage before SATD is removed or fixed. Yan et al [68] Introduced change-level

self-admitted technical debt determination. This model determines whether the

change introduces SATD, by using all versions of the source code comments and

identifying the SATD at file level for each version. After that, manually label the

changes that introduce SATD, and extract 25 features referring to three dimen-

sions, diffusion, history, and message. In the message dimension, they viewed

commit messages that written by the developer and analyzed to extract informa-

tion about the purpose of change in the code. This information grouped into five

categories ("has bug, has feature, has improve, has document, has refactor"),the

commits that contained the keyword will belong to one of five category (i.e.

"bug" indicates fixing bug) , the commit length added to predict if the commit

is related to SATD depending on the number of keywords that are included in

the message. The random forest. Across 7 projects with 100,011 changes, this

48

model achieves an AUC of 0.82, and a cost-effectiveness of 0.80 for all features.

For messages commit achieves AUC of 0.57, and a cost-effectiveness of 0.72.

Maipradit, R. et al. [40] introduced on-hold self admitted technical debt, that

performed a qualitative study on 333 commits extracted from Maldonado, Ev-

erton da S., et al [42] study that labeled the commits as removed, that means

the commits indicate to remove related technical debt. On-hold refers to debt

that has a condition that makes the developer waiting for another event or ac-

tion, such as adding functionality elsewhere to fix the debt, the aim of the study

to identify these on-hold instance debt, and detect the specific conditions that

make the developer waiting. The study achieved an area under (AUC) of 0.98

for the identification, and 0.90 of the specific conditions are detected correctly.

Rantala & Mäntylä [54]. Replicating and extending the work introduced by

Yan et al.[68], they used 1876 commits messages extracted from five repositories

(Camel, Log4J, Hadoop, Gerrit, and Tomcat) that pre-labeled as SATD, and three

techniques of NLP (bag-of-words, latent dirichlet allocation, and word embed-

ding), to predict self-admitted technical debt from commit messages. The main

contribution of this study, the bag-of-words technique is the best performance

with median (AUC 0.7411). Automatic feature selection from the commit mes-

sage improved the prediction performance for SATD. For generalization results

when using different repositories, the words in the commit message are required

to appear in several repositories, with a certain number of times. List of words

that can be used to predict the SATD in commit message contents.

The summary of the previous studies that related to this approach appear in

the table 3.1

49

Paper Approch Main contribution(s) / Finding(s)
[53]
(2014)

Pattern-based SATD exists in 0.024 -0.31 of the source code
files. 0.263 - 0.635 of SATD gets removed from
projects after introduction. Introduced 62 pat-
terns to indicate the SATD

[41]
(2015)

Filtering heuristics Dataset classified to five types of SATD (require-
ment, defect, design, documentation, and test)

[23]
(2015)

CVM detection Provides a vocabulary that may be used to de-
tect TD items.

[25]
(2016)

Pattern-based Set of Patterns to identifiy TD in comments.

[59]
(2017)

NLP and Max Entropy
classifier

Data set of classified SATD. Achieve an average
F1- measure of 0.620 when identifying design
self admitted technical debt, and an average F1-
measure of 0.403 for requirement TD.

[28]
(2018)

Text-mining , ML
classifiers (NB, SVM,
KNN,)

F1-score, with an average of 0.737 for require-
ment and design TD.

[19]
(2018)

Word2vec, feature se-
lection , SVM

Created Word2Vec model from 360 open source
java projects. 0.82 of correct predictions of
SATD or not.

[20]
(2019)

word2vec, feature se-
lection(CHI, IG and
MI) . classification al-
gorithms (NB, SVM,
and ME)

0.82 of correct predictions of SATD or not.

[62]
(2019)

RF classifier, N-gram
IDF

Multi classification techniques, and construct
a model that can identify a comment to de-
sign debt, requirements debt, or non-SATD. F1-
score, with an average of 0.648

[55]
(2019)

CNN Backtracking method designed to extract key
phrases and the patterns to using in CNN.The
result of the study was on average F1-score
0.752 for prediction SATD or not within project.

[57]
(2020)

LSTM , Word2vec LSTM model with Word2vec have improved in
recall and f-measure. The LSTM model without
word
embedding achieves greater recall, but perform
worse in precision and f-measure

TABLE 3.1: Summary papers that related to this thesis

50

Chapter 4

Research Methodology

The main objective of this thesis is to classify the SATD comment into what cat-

egory that belongs to (requirement, defect, design, test, or documentation), by

using comments and commits written by the developers. NLP techniques are

used to extract the features from these comments, then machine learning and

deep learning are used as classifiers. The figure 4.0.1 shows the workflow of the

research methodology.

FIGURE 4.0.1: Research methodology workflow

51

4.1 Dataset description

To perform this study, more than one dataset will be used. The developers used

two types of expressions for writing, which can be considered as SATD; source

code comments and commit messages. The focus will be more on the comments

and the commits used to add more variety of sentences used in Adataset that

will be created, with the aim of generalizability.

4.1.1 Source code comments

The first dataset that usually used in most of previous studies and introduced

by Maldonado et al. [59] the data set consist of 62k comments that extracted

from 10 open source project (Ant, ArgoUML, Columba, EMF, Hibernate, JEdit,

JFreeChart, JMeter, JRuby and SQuirrel SQL), the comments classified into five

types of SATD, requirement : 757, design : 2703, defect: 472, test: 85, documenta-

tion: 54, other comments are unclassified. Figure4.1.1 show the sample of data.

FIGURE 4.1.1: Sample of comments dataset [59]

To create a new dataset, so 222 source code comments extracted from two

open source android mobile applications, namely K9 and wordpress, using a

52

Adataset
Project Name No. Comments Removed dupli-

cate comments
Gerrit 272 172
Camel 4332 1162
Log4j 136 91
Tomcat 1318 1052
Hadoop 1165 625
K9 App 339 145
WordPress App 94 77
Total 7317 3324

TABLE 4.1: Number of new collected comments

SATD detector that automatically detects SATD using text mining-based algo-

rithms [37]. In K9 app, there are 339 comments extracted by this tool, 170 com-

ments as SATD and 169 as Java tasks, after removing the duplicated comments

145 comments used that classified as SATD . In the Wordpress app 94 com-

ments are extracted as SATD, and reduced to 77 after removing the duplicate

comments. Additionally, 3102 comments were took from five open source code

projects(Gerrit, Camel, log4j, Tomcat, Hadoop) that were used by Everton da

S. et al. study [42], and the comments classified as SATD. These comments will

be manually labeled into the types of SATD that include requirement, design,

defect, documentation, and test.The table 4.1 summary the final comments.

4.1.2 Commits messages

For the commits messages the detest [54] will be used and it requested from the

author via email. The dataset contains the 73,625 messages from which 1,876

classified as SATD. The commits messages are in their original state, without

any processing steps. After remove duplicate commits, and URL of conduit for

changesets between subversion and Git for most of the commits, the dataset

53

have 1758 commits classified as SATD. Figure 4.1.2 show the sample of commits

from dataset.

FIGURE 4.1.2: Sample of commits dataset; 1 classified as SATD,
0 unclassified [54]

4.1.3 Manual annotation

After preparing the comments from source code of seven software projects and

the commits from previous study [54] as aforementioned. The manual annota-

tion was performed through two phases. In phase 1; the classification method

from Li, Yikun et al study [35] ,and Ai Deng study [15] will be followed, which

both are based on a framework proposed by Alves et al [4]. Additionally, Alves

et al [3] conducted systematic mapping in total, 100 studies, dated from 2010 to

2014. The taxonomy and definitions at least for the five types of TD used in this

study was the same.

Alves et al [4] proposed an ontology to definitions and indicators of technical

debt that were spread across the literature. In other words, the factor that lead to

the introduce a technical debt. Alves et al provide 13 different types of TD with

definitions that include: "architecture, build, code, defect, design, documenta-

tion, infrastructure, people, process, requirement, service, test automation, and

54

test debt". In case of self admitted technical debt, Maldonado and Shihab[41]

manually analyzed 33,093 comments and classified them, the main finding was;

most of technical debt types that self admitted in source code are (requirement,

design, defect, test and documentation debt). The other 8 types that remaining

of technical debt defined by Alves et al. [4] were not found in this approach

since the developers are not likely express them by the comments, i.e infrastruc-

ture, people and process no indication was found. Additionally, some of TD

may overlap such as design and architecture.

To create the dataset, and after prepared the comments and commits, the

database created and all the comments and commits inserted for classification.

Then, and after the comments classified in phase 1. Public website 1 was pub-

lished to git the maximum number of classification from the participant. The

website include three pages(Home,Registration, Classification). In the home

page the steps provided for participant to complete the task, and set of defi-

nitions to deep understand the technical debt and their types as following :

• Source code comments : Source code comments are explanation or an-

notation that written by the developers, comments allow developers to

clarify, document, and express concerns about the implementation in an

informal method that does not influence the functionality of the program,

and are generally ignored by compilers and interpreters [65].

• Commits: commits messages are an express of action that the developers

made on the source code and document this action with semantic commits.

• Technical debt: is a metaphor, coined by Ward Cunningham [12]. It re-

flects the additional cost that imply to rework caused by a sup-optimal

solution instead of using the better approach in software development life

1https://github.com/asabbah44/SATD

https://github.com/asabbah44/SATD

55

cycle. The concept of TD is derived from financial debt, as the Interest

resulting from the late payment. Similar to the financial dept, TD has an

interest and the cost increases if not pay the debt early, by refactoring the

code on the suitable time, to avoid interest in the future.

• Self-Admitted technical debt - SATD : It is a technical debt that written

by the developers deliberately, through comments or commits messages,

with the knowledge that the implementation is not an optimal solution for

the software [28].

The definitions for each type of self- admitted technical debt provided obvi-

ously, in order to make the reader understand the various types of SATD, and

given examples for each type as following:

• Self-admitted design debt: The comments that indicate a problem with

the design of the code. It could be comments about , lack of abstrac-

tion, long class and methods, bad of implementation, misplaced code,

workarounds, or a temporary solution.[3]. The following source code com-

ments are examples of self-admitted design debt:

– // PR: I do not know what to do if the object class // has multiple

defines // but this is for logging only... -[from apache-ant-1.7.0]

– // I hate this so much even before I start writing it. // Re-initializing

a global in a place where no-one will see it just // feels wrong. Oh

well, here goes.” - [from ArgoUml]

– TODO: - This method is too complex, lets break it up - [from Ar-

goUml]

– TODO: really should be a separate class - [from ArgoUml]

56

– TODO: move this to components – the only reason why it’s in core

is because // it’s used as a guinea pig by a couple of tests.-[from

apache-jmeter-2.10]

– // XXXX re-evaluate this //can getSuper work by itself now? //If

we’re a class instance and the parent is also a class instance //then

super means our parent.-[fromjEdit-4.2]

• Self-admitted defect debt:The comments describe the part of code that

has a problem in expected behavior, in other words it has a defect in code.

[41].

– “// Bug in above method” - [from Apache Jmeter]

– “// WARNING: the OutputStream version of this doesn’t work!” -

[from ArgoUml]

– // FIXME formatters are not thread-safe-[from apache-ant-1.7.0]

– // TODO: Something might go wrong during processing. We don’t

really // want to create the model element until the user releases the

mouse // in the place expected.[from-argouml]

– // todo: is this comment still relevant ?? // FIXME: need to use a

SAXSource as the source for the transform // so we can plug in our

own entity resolver-[from apache-ant-1.7.0]

• Self-admitted test debt: The comments that express need to improve cur-

rent tests or implement new tests. "Inadequate test coverage, lack of tests,

and improper test design" [41].

– // TODO should this be done even if not a full test plan? // and

what if load fails?-[from apache-jmeter-2.10]

57

– // not sure whether this test is needed but cost nothing to put. //

hope it will be reviewed by anybody competent-[from apache-ant-

1.7.0]

– // cleanAllExtentsBut(model); // TODO: why is this causing a crash?!?-

[from ArgoUml]

– //TODO: Test Mac keyboard accelerator changes done here by mliv-

ingstone // shortcut key

• Self-admitted requirement debt: Comments indicate that there is an am-

biguous requirement that leads to incompleteness of program, class or

method.[41]. Additionally, the requirement which are implemented, but

does not absolutely satisfy all the non-functional requirements (e.g. per-

formance ,security, etc.).[4]

– “/TODO no methods yet for getClassname” - [from Apache Ant]

– “//TODO no method for newInstance using a reverse-classloader” -

[from Apache Ant]

– “TODO: The copy function is not yet * completely implemented - so

we will * have some exceptions here and there.*/” - [from ArgoUml]

– // TODO support multiple signers -[from apache-jmeter-2.10]

– // Set the overall status for the transaction sample // TODO: im-

prove, e.g. by adding counts to the SampleResult class-[from apache-

jmeter-2.10]

• Self-admitted documentation debt: incomplete comments, lack of code

comments, no documentation for important concerns, poor documenta-

tion. The expression of comments that lack of documentation describe the

part of software.[41]

58

– * **FIXME** This function needs documentation-[from columba-1.4-

src]

– // FIXME: Document difference between warn and warning (or re-

name one better)-[from jruby-1.4.0]

– “// TODO Document the reason for this” - [from Apache Jmeter]

Before starting the manual annotation process, each participant needs to fill

some details about him/her-self in the next page, such as email address, the

experience range; 1-5 years, 5-10 and more than 10 years, and the job description

that includes; Software engineer, programmer, software architect, QA- testing,

project manager, team lead, academic student and academic teacher.

In the classification page, a set of comments appear to the participant se-

lected randomly from the overall comments that the first author classified before

for one at a time. A criteria is applied on the comments selection to guarantee

that no comment is repeated for the same participant and that the comment is

not classified by more than two different participants. The web application pro-

vided the participants a summary of the definition of each SATD category. By

this, each participant is sure about the type of debt that he or she can chosen

from the list that embedding the five types of self admitted technical debt. The

participant has an option to skip any unsure comment. The aim of the partici-

pant classification is to make the Kappa statistical test [18], and to be sure of the

reliability of the new dataset that created (Adataset). Cohen’s kappa coefficient

[11] used in other studies with the same labeling method [35] [59].The database

schema and website pages show in Appendix A.

59

4.1.3.1 Manual annotation result

The first author classified int total 1513 comments and commits out of 5082.

Number of comments that classified 1147 out of 3324, and number of commits

classified 366 out of 1758. The first author review all comments and commits,

and the name of project was hidden, some comments were name of functions or

methods with "TODO", or "FixMe" this kind of comments skipped, other types

of comments consists of more than one sentences and and give more than one

type of SATD also skipped. Additionally, the comment that clearly do not belong

to the five types of SATD was skipped. With regard to commits,in addition to

what was done in comments, some commits were describe the issue solved by

person, it was skipped. Tables 4.1.3 4.1.4 summarize the result of first author

comments and commits classification.

FIGURE 4.1.3: Comments classification

FIGURE 4.1.4: Commits classification

60

4.1.3.2 Kappa Test

To mitigate the chance of creating a biased of dataset, a group session for five

participants was conducted, one of them has master degree in software engi-

neering and working as team leader with 10 years experience in software devel-

opment, two participants studies software engineering in Birzeit University and

working as a software developer with 6 and 8 years experience. The last two par-

ticipant has a Bachelor in computer science with 4 and 13 years experience. The

group session toke three hour, in the first hour the introduction about SATD and

the five types was presented with given more than on example for each type. In

the next hour, the discussion was opened to answer questions. Lastly the web-

site viewed and explained the steps for classification. Only software engineering

participants interact with the topic, and classified 260 comments and commits

that generated randomly from the comments and commits classified before by

the first author. The first expert classified 121 comments and 28 commits, the

second expert classified 35 comments and 15 commits, the last expert classified

49 comments and 12 commits. Most of the difference between author and ex-

perts was between requirements and design, following tables 4.1.5, 4.1.6, 4.1.7,

4.1.8, 4.1.9 shows the result of experts classification comparing with author.

FIGURE 4.1.5: Experts versus author for requirements classifica-
tion

To evaluate the level of agreement between both experts and author Cohen’s

61

FIGURE 4.1.6: Experts versus author for Design classification

FIGURE 4.1.7: Experts versus author for Defect classification

kappa coefficient [11] calculated. The Cohen’s Kappa coefficient is a widely used

method to evaluate inter-rater agreement level for categorical scales, and it cal-

culates the proportion of agreement that is chance-corrected. The result of co-

efficient is scaled from -1 and +1, with a negative value indicating worse than

chance agreement, zero means exactly chance agreement, and a positive value

indicates better than chance agreement [17]. Whenever the value closer to +1 ,

the agreement is stronger. The level of agreement calculated between two ob-

servers (author and experts) , and five categories (requirement, design, defect,

test, documentation). The online kappa calculator used 2. The test achieved a

level of agreement measured between the author and experts +0.82 based on a

sample including of 0.17 of all technical debt types , which is considered almost

perfect agreement according to Fleiss [18] values larger than +0.75 are character-

ized as excellent agreement. Additionally, the test results present the result on

PhD expert in statistical field, who recommended the result. Table 4.1.10 present

2https://www.graphpad.com/quickcalcs/kappa1/

https://www.graphpad.com/quickcalcs/kappa1/

62

FIGURE 4.1.8: Experts versus author for Test classification

FIGURE 4.1.9: Experts versus author for Documentation classifi-
cation

the input data for Kappa test. Each cell in the table is defined by its row and col-

umn. The rows specify how each SATD type was classified by the author. The

columns specify how the experts classified the subjects. For example, in the sec-

ond row of the first column 10 comments classified by the author as design, but

the experts classified into the requirement. In the second column of the second

row 89 comments classified by both observers into the design.

FIGURE 4.1.10: Input data for Kappa test

63

4.1.4 Data exploratory and analysis

The exploration of data and analysis it is one of important phase for NLP and

machine learning. Data visualization help deep understanding the text, and the

relations between words, to direct us which tools and techniques should choose

in workflow of machine learning and NLP. This section will discuss major tech-

niques that can be use to understand the text data. The new dataset that created

and labeled in this study was combined with the previous dataset that used in

most of previous study as mention above. Most of the processes of data analysis

that will be on the raw data without any pre-processing.

4.1.4.1 Data analysis at text level

This technique considered simple, but it give insightful about the data. The most

common methods include; word frequency, sentence length, average length of

word, and other representation technique. After the dataset extended by 1513

new comments and commits, the total number of sentences is 5585. The first

thing will be to look at the number of characters, number of words, and average

word length in each sentences, This will provide us with a rough estimate about

the length of comments. As the figure 4.1.11 shows, the comments generally,

between 6 to approximately 700 characters, figure 4.1.12 shows that comments

range from 1 to 957 words before any preprocessing, mostly falls between 1 to

150 words. After the comments enter to preprocessing pipeline, the length of

sentences range from 1 to 500, mostly falls between 1 and 50 words, and the

average of numbers of words in comment is 11, as figure 4.1.13. The average

word length ranges between 3 to 10, most of comments length is 5. Dose it

mean that the developers write the comments using shorts words. Figure 4.1.14

presents average word length. To explore the words length it should consider

64

the stop words that are most commonly used in the language such as “a”,” an”,”

the” etc. Stop words are probably small in length and effect on the data analysis,

and may have caused the figure 4.1.14 to be left-skewed.

FIGURE 4.1.11: Number of characters appearing in each com-
ment without preprocessing

FIGURE 4.1.12: Number of words appearing in each comment
wihout preprocessing

The number of stop words in the data 136 words, the words "the" frequency

more than 4800 time. As figure 4.1.15 shows the frequency of them appearing in

65

FIGURE 4.1.13: Number of words appearing in each comment
after preprocessing

FIGURE 4.1.14: Average word length appearing in each com-
ment

all corpus. After removing stop words, the histogram is different and the graph

skewed to the right. Figure 4.1.16 shows the different of the length of words after

remove stop words comparing with 4.1.14. Some words reach to more than 15,

this because some of words are name of class or method (e.g."getOut(boolean)").

As a result stop words effect on the sentence in features extraction process.

After remove stop words, the inspection of which words appear other than these

66

FIGURE 4.1.15: Frequency of stop words

FIGURE 4.1.16: Average word length appearing in each com-
ment after stop words removed

stop words frequently in figure 4.1.17 shows the most of words are punctuation

marks, these symbols use frequently because it is the start of comment in source

code file to avoided by the compilers. But these symbols did not add any mean-

ing for the sentences. Additionally, the word "TODO" appearing frequently, so

it will remove from the comments to view the other words frequently, and it will

not remove during feature extraction phase. Figure 4.1.18 shows the frequency

67

of words after remove punctuation marks.

FIGURE 4.1.17: Frequency of words

FIGURE 4.1.18: Frequency of words after remove punctuation
marks

Word cloud is a great way to represent text data, and give overview about

the most words frequency or importance. Figure 4.1.19 shows the most impor-

tance words and frequency after clean the comments from punctuation and stop

words.

4.1.4.2 Data analysis at features level

After the nature of comments has been understood as a text, the exploration

of the data and analysis will be at a features level, when the words converted to

68

FIGURE 4.1.19: Word cloud data representation

number, this called feature extraction or feature engineering. The aim of analysis

the data at this level, to study the relations between the words in vectors space,

foreword to help us what the best techniques in NLP and machine learning can

solve the classification problem in the best way.

To present the relation between words, the co-occurrence network of words

will be used by KH Coder 3. Co-occurrence network is a representation of co-

occurrence matrix that shows the terms based on their paired presence within a

comments (i.e Term Frequency (TF)). The words filtered by setting the value of

word frequency to 30, the types of part of speech that used ; noun, verb, adjec-

tive, and adverb. The comments enter in the pre-processing pipeline to remove

stop words, punctuation, some of words that frequently occur such as "TODO,

"FIXME", the aim of removing these words to view other words frequently. Co-

occurrence network can be generated depend on word to word relations or word

to variable. In this case the second type was used to show the words that over-

lapping between the types of SATD. The figure 4.1.20 show the co-occurrence

3https://khcoder.net/en/

https://khcoder.net/en/

69

network for top 200 words. The measure of strong co-occurrence between words

is the words are connected with lines (edges), words plotted close to each other

do not necessarily imply that they have a strong co-occurrence. The thicker

line (edge) between two words indicates that these two words have a stronger

co-occurrence, according to the value of its Jaccard coefficient. This network re-

flects the overview that how the same words are share in the different types of

SATD. As a result that the count-based approach such as TF-IDF may not the

best method for feature extraction, and may need to include the word embed-

ding techniques such as word2vec with deep learning to satisfy a good result.

FIGURE 4.1.20: Co-occurrence network of words

70

4.2 Research approach

An empirical study was conducted between dependent and independent vari-

ables, to measure the relationship between the models and machine learning

techniques for the accuracy of SATD classification. Tow independent variables

considered; pre-trained models and machine learning algorithms, and one de-

pendent variable; the classification accuracy. To do the experiment and after

preparing the dataset, the Colab4 will be used that provided by the Google and

Tensorflow5, the experiment will be done throws three main phases; preparing

the comments by pre-processing the text using NLP techniques, features engi-

neering to converting tokens of text into features, and classification phase using

machine learning approach.

4.3 System design.

4.3.1 Preprocessing.

The aim of the preprocessing phase is to focus more on the words of a sentence

that give the meaning. Usually, the comments and commits are written in nat-

ural language, and it includes noises that don’t affect on the semantic meaning

of sentence. These sentences need to handle thought pipeline processes, to keep

the important words and remove the noises words, that will be form the fea-

tures input into machine learning algorithms. Some of NLP techniques 6 7 used

to perform this phase as following:

4https://colab.research.google.com
5https://www.tensorflow.org
6https://www.nltk.org
7https://spacy.io/

https://colab.research.google.com
 https://www.tensorflow.org
https://www.nltk.org
https://spacy.io/

71

FIGURE 4.3.1: System Design

4.3.1.1 Tokenization.

Tokenization is one of the first steps in NLP pipeline preprocessing, and it’s

the task of spilt the text into units called tokens with semantic meaning. In

English language, the sentences are composed of words split by white-space,

each words have a semantic meaning. The following example of raw comment

and tokenized it without any prepossessing

E.g Comment :
"// I hate to admit it, but we don’t know what happened // here.

Throw the Exception."
After the comment tokenized :

[’//’, ’I’, ’hate’, ’to’, ’admit’, ’it’, ’,’, ’but’, ’we’, ’do’, "n’t", ’know’,

’what’, ’happened’, ’//’, ’here’, ’.’, ’Throw’, ’the’, ’Exception’, ’.’]

As noticed from the example above how the tokenization split the comment

depending on the meaning not on the space-white between the words. For ex-

ample "don’t" splitted into two words "do" and "not". Additionally, the comment

72

has noises tokens should be cleaned from the sentence, that what will done in

the next process.

4.3.1.2 Text cleaning:

The objective of the cleaning steps to removing all undesirable content from

comments and commits sentences, by applying the following techniques.

• Punctuation removal : In this step all symbols such as backslash , ques-

tion marks, comma , etc, were removed from the comments sentences.
[’I’, ’hate’, ’to’, ’admit’, ’it’, ’but’, ’we’, ’do’, "n’t", ’know’, ’what’,

’happened’, ’here’, ’Throw’, ’the’, ’Exception’]

• Stop words removal : Stop words such as but, we, what, etc.

[’hate’, ’admit’, ’know’, ’happened’, ’throw’, ’exception’]

• Non-alphabetic removal : Remove the numbers in the text that not give

any meaning.
[’TODO’, ’workaround’, ’source’, ’check’, ’failure’, ’afterProperties-

Set’, ’method’, ’Executable’, ’statement’, ’count’, ’101’, ’max’, ’al-

lowed’, ’100’]

After remove non-alphabetic
[’TODO’, ’workaround’, ’source’, ’check’, ’failure’, ’afterProperties-

Set’, ’method’, ’Executable’, ’statement’, ’count’, ’max’, ’allowed’]

4.3.1.3 Normalization:

Normalization is a process to convert the words to a more uniform sequence.

Three NLP techniques used for the transformation :

• Case folding : In this step all words(token) converting to small letter

73

• Parts of Speech (POS) : Part of Speech tagging is a process of classifying

words into their parts of speech (e.g. noun, verb, adverb, adjective etc.) for

each word in a sentence. This step important for lemmatizetion process

that return each word to it root with pre-knowledge the POS tags, in order

to maintain the meaning.

• Lemmatization : The Spacy lemmatizer comes with pretrained models

that can provide various properties of the text, such as POS tags, named

entity tags, so the POS tags did not needed, since they explicitly provided

like NLTK that uses the WordNet lemmatizer library.

Comment before preprocessing
// I hate to admit it, but we don’t know what happened // here.

Throw the Exception.

Comment after preprocessing

[’hate’, ’admit’, ’know’, ’happen’, ’throw’, ’exception’]

4.3.2 Features engineering

The second phase in the study approach is to extract useful information from

comments, and representation them into a form suitable for machine learning.

Two strategies will be used for transformation the words to math form (num-

bers). The first strategy that include the NLP techniques and depend on syntax.

This strategy defines the grammatical structures or the set of rules defining a

language, such as Bag-of-words and TF-IDF. The second strategy that focus on

the semantics of words that takes care of the meanings, and how to collect the

words together to make sense with consider the syntactical rules, this strategy

also called word embedding method, 5 techniques will be used in this study ;

Word2vec, software engineering word2Vec model, Fasttext, BERT, and Glove.

74

Additionally, Universal Sentence Encoder (USE) used to convert all sentence to

vectors with height dimension without split it into words.

4.3.2.1 Syntactic vectorization methods

• Bag-of-Words (BOW) : is a simple representation method, that use the fre-

quency of the words in the particular document, this method also called

Term frequency (TF). For understanding BOW for example, after pre-processing

the comments, list of vocabulary from all comments is generated , each

comment represented as a numeric vector. The length of each vector is

equal to the size of the vocabulary list. Every entry in the vector corre-

sponding a word in the vocabulary list, the value of entry would be equal

the frequency of word in particular comment, or zero if the word not exist

in that comment. All the vectors reshaped in the matrix with dimensions

(number of comments * size of vocabulary list). The following example

shows BOW matrix for only tow comments after cleaning and normaliza-

tion.

Comment 1 : [’check’, ’load’, ’consecutive’, ’run’, ’end’, ’outofmemoryer-

ror’, ’fail’, ’native’, ’library’, ’load’, ’time’, ’far’, ’perfect’, ’work’, ’case’]

Comment 2 : [’todo’, ’warning’, ’line’, ’show’, ’code’, ’contain’, ’variable’,

’error’, ’cause’, ’trouble’, ’parser’, ’definitely’, ’well’]

FIGURE 4.3.2: BOW vectors for tow comments

As the figure 4.3.2 shown for each comment the vector with length equal

the length of total words of vocabulary list. BOW method extract the fea-

tures depending on the frequently of word, at the same time it do not

75

take the order of words in sentence. N-grams is a method for enhanced

the BOW that can take range of words that represent entries of the vec-

tor. Figure 4.3.3 show the same example aforementioned after applying

N-grams method with rang(1,3), which it means for each entry it pick the

neighbors until 3 words. This increase the length of vector, and to avoid

overfitting that occur when the vector length overcome the vocabulary

list. max_features parameter will build a vocabulary such that the size of

the vocabulary would be less than or equal to max_features ordered by

the frequency of tokens in a corpus. Other issue may face the N-grams

method called underfitting, that occur when the phrases might occur very

frequently in an individual comment or may be present in almost all com-

ments in the corpus. For avoiding this issue max_df as threshold used

to ignore terms having a document frequency higher than that threshold.

Moreover, min_df uses to remove the terms that occur fewer times in a

document than a given threshold.

FIGURE 4.3.3: BOW after applying N-gram range between 1 and
3

• Term frequency inverse document frequency(TF-IDF) As mentioned in

background section. The main difference from the BOW is the TF-IDF take

in consideration weight of word. while BOW is only depend on the fre-

quently of words across a document to built the vector. For example the

figure 4.3.4 show the representation of tow comments.

The approach of this study adopts the TF-IDF method, because it include BOW

with enhancement the value of word representation .

76

FIGURE 4.3.4: TF-IDF representation for two comments

4.3.2.2 Word embedding method

The count-based feature engineering strategies for transformation text into vec-

tors was discussed. The models that used belonging to a family of Bag of words

as aforementioned. While they are effective models for extracting features from

comments, due to the representation model being just a bag of unstructured

words, and to avoid loss the important information like the semantics, struc-

ture and the context around nearby words in each comments. This motivates

us to explore state of the art models to capture this important information that

embedding in the representation of words.

• Word2Vec: is unsupervised deep learning model provided by the Google,

it used to train word embedding, or vector representation of words. In this

study two models belong to Word2Vec family will be used, the first one

is Word2Vec model8 trained on part of Google News dataset (about 100

billion words). The model contains 300-dimensional vectors for 3 million

words and phrases. The second one, is a software engineering specific

model[16]. It is a word2vec model trained over 15GB of textual data from

Stack Overflow posts, 6 billion of words used for training task, the output

pre-trained . The following example 4.3.5 shows the similarity between six

words using these models.

• GloVe : is a extended of Word2vec model, GloVe works similarly as Word2Vec.

Word2Vec is a "predictive" models that predicts context given a word, and learns

8https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

77

FIGURE 4.3.5: Word2vec models for different domain

their vectors to enhance their predictive ability of Loss. GloVe 9 is a count-based

model. It learns by building a co-occurrence matrix (words X context) that es-

sentially count the number of times the word appears in context, in order to re-

duce the dimensionality on the co-occurrence counts matrix. The public domain

model used “glove.840B.300d”, that includes 840B tokens, 2.2M vocabulary, 300-

dimensional vectors, and the model size is 2.03GB.

Fasttext: Fasttext is a library introduced by the Facebook for efficient learning of

word embedding and text classification. The model used "crawl-300d-2M.vec":

2 million word vectors trained on Common Crawl (600B tokens) with 300 di-

mensional vector 10.

BERT : stands for Bidirectional Encoder Representations from Transformers (BERT).

BERT11 is introduced in two variants, such as BERT-BASE and BERT-LARGE.

The BERT-BASE has a number of transformer blocks 12, hidden layer size 768 ,

9https://nlp.stanford.edu/projects/glove/
10https://fasttext.cc/docs/en/english-vectors.html
11https://github.com/google-research/bert

https://fasttext.cc/docs/en/english-vectors.html
https://github.com/google-research/bert

78

attention heads 12 and total parameters 110M. The BERT-LARGE has a number

of transformer blocks 24, hidden layer size: 1024, attention heads 16 and Total

parameters 340M. ktrain library 12 used in order to use the BERT model. For

BERT parameters tuning. The recommendation method was followed as men-

tioned in 13

4.3.3 Machine learning Classifiers

The last phase in this study is classifying the comments into one of the consid-

ered five categories (Requirement, Design, Defect, Test, Documentation). More

than one algorithm used that belong to the classic machine learning approach,

and neural network approach that mostly used with deep learning. Four classi-

fication algorithms will be used in this study; Support Vector Machines classifier

(SVM), Naive Bayes classifier (NB), Random Forest Classifier (RF) and CNN for

classification task.

4.3.3.1 Support Vector Machines classifier (SVM)

In most of the previous studies, the SVM was used as a binary classifier for SATD

identification task [20]. In this study, the SVM used as a multi-classifier with the

features that explained in the earlier sections. The Scilkit-Learn used, which is a

14 Python library that includes SVM implementation.

4.3.3.2 Naive Bayes classifier (NB)

The NB machine learning algorithm is based on Bayes theorem. NB is one of the

most famous and successfully applied supervised machine learning classifier

12https://libraries.io/pypi/ktrain
13https://arxiv.org/pdf/1810.04805.pdf
14https://scikit-learn.org/stable/modules/svm.html#svm

https://libraries.io/pypi/ktrain
https://arxiv.org/pdf/1810.04805.pdf
https://scikit-learn.org/stable/modules/svm.html##svm

79

in the NLP applications [20][28]. In this study, NB will be used as classifier to

identify the technical debt classes.

4.3.3.3 Random Forest (RF)

A random forest is a meta estimator that uses averaging to increase predictive

precision and control over-fitting by fitting a range of decision tree classifiers

on different sub-samples of the dataset. The RF use with default parameters as

provided by Scilkit-Learn 15

4.3.3.4 Convolution Neural Network (CNN)

CNN approach is used by more complex and modern forms of Artificial Neural

Networks (ANNs). The CNN model used for multi classification task, where

the CNN model takes an input comment and predicts the type of SATD out

of the five categories (requirement, design, defect, test, documentation). The

architecture of the CNN includes an input layer, a convolutional layer, pooling

layer, fully connected layer, and finally output layer. The architecture of CNN

is described in detail in background chapter 2. The implementation of the CNN

model and hyper parameters will be studied and described in details in the next

chapters.

Pandya et al. [50] introduced the study to comparing different Deep Neural

Network(DNN) that used with NLP. The main finding of this study was the

CNN model was very suitable for text and sentimental classification. While the

RNN is well suited for sequence modeling. So this study will be adopted the

CNN approach with activation function such as "softmax" as recommended by

that study.

15https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

80

The following figure 4.3.6 summarizes the three main processes of system

design.

FIGURE 4.3.6: The three main processes in system design

4.4 Evaluation metric:

The proposed system will be evaluated using evaluation metrics, and the defi-

nition of the three statistics calculation include:

• TP (true positive) : shows the number of comments that predicted to the

true classes.

• FP (false positive) : represents the number of comments that predicted as

false classes and they actually belong to the false classes.

• FN (false negative) : the number of comments that actually true classes

but the predicted to the false classes

The Precision, Recall, and F1-score computed using these statistics, to evaluate

the performance of a classification methods, figure4.4.1 show the confusion ma-

trix for the proposed system. A general rule of thumb (80:20) used for split the

dataset, 0.80 for train, and 0.20 of dataset for testing.

81

FIGURE 4.4.1: confusion matrix for the five SATD classes

• Precision : measure the percentage of comments that are correctly classi-

fied as true classes among all comments classified as true classes.

Precision =
TP

TP +
∑

FP
(4.1)

• Recall : denotes the ratio of all comments that are correctly classified into

true classes.

Recall =
TP

TP +
∑

FN
(4.2)

• F1-score : is a harmonic mean of precision and recall.

F1− score =
2 ∗ precision ∗ recall
precision+ recall

(4.3)

Overall accuracy =

∑
TP∑

TP +
∑

FP
(4.4)

• Support : is a number of test samples for each SATD class.

82

• macro average : macro average compute precision, recall, and F1-score

for each label, and returns the average without considering the proportion

for each label in the dataset.

• weighted average : compute precision, recall, and F1-score for each label,

and returns the average considering the proportion for each label in the

dataset.

83

Chapter 5

Experimental setup

The main goal of this research is to investigate the effectiveness of NLP tech-

niques, Machine Learning(ML), and Deep Learning(DL) approaches for classi-

fication SATD extracted from source code comments and commits.

In order to achieve this goal, a set of experiments will be conducted using

collected dataset and available datasets, with a combination of NLP and ML

techniques. Each ML classifier is used with three datasets. The first dataset is

that introduced by Maldonado (will be referred to as the Mdataset though out

the remaining of this thesis). The second dataset is that created in this study (will

be referred to as the Adataset). The third dataset is a merge of Adataset and the

Mdataset. the experiments are designed and conducted in order to give answers

of the research questions which are presented in the introduction. Experiments

with various feature engineering techniques have been conducted to present an

answer to the (RQ1): ’How well the NLP pre-trained models can improve the

identification of self-admitted technical debt from source code comments and

commits effectively ?’. The following features engineering techniques will be

used:

• Term frequency inverse document frequency(TF-IDF).

84

• Words embedding that include the following pre-trained models:

– Universal Sentences Encoder (USE).

– Word2Vec

– Global Vectors for Word Representation (GLOVE)

– Fasttext

– Bidirectional Encoder Representations from Transformers (BERT)

Similarly, a various combination of machine learning techniques (traditional

and deep learning) have been used in the experiments in order to present an

answer to the second research question (RQ2): ’How well machine learning al-

gorithms that include (SVM, NB, RF, and CNN) can automatically classify the

five SATD types efficiently?’. The following machine learning classifiers used:

• Classic machine learning :

– BernoulliNB Naive Bayes, the Bernoulli NB can focus on a single

words, also it can count how many times that words does not occur

in the document.

– Random Forest Classifier

– Support Vector Machines SVM (LinearSVC)

• Deep learning : To answer the (RQ4): ’Does increasing the numbers of

layers in CNN model improve the accuracy of the study approach? ’. Two

models of CNN were built as the following :

– Single-layer Convolutional Neural Network (CNN)

– Multiple-layer Convolutional Neural Network (CNN).

85

5.1 Environment setup:

To conduct the experiments, Google Colaboratory, or “Colab” for short used,

which is a cloud service supports GPU processors. Colab allows to write and

execute Python in browser. Table 5.1 shows the detailed specifications of the

processing capability that used in all of the experiments. Python is used in ML

and NLP strategies since it is preferred in this domain over other languages [2].

It includes a large range of modules and libraries for natural language process-

ing (NLP) and data processing [64].

Type Specification

CPU model Intel(R) Xeon(R) CPU @ 2.20GHz

Cache size 56320 KB

Ram 13.3 GB

Disk 69 GB

GPU Tesla T4

OS Ubuntu 18.04.5 LTS

TABLE 5.1: Environment setup

5.2 Pre-Processing

In order to clean and prepare text data in a predictable and analyzable man-

ner for the experiments, a set of pre-processing steps used, as described earlier

in the methodology chapter. In all of reported experiments, the following pre-

processing steps used.

86

5.2.1 Tokenization

Tokenization is one of the first steps in NLP pipeline preprocessing, and it’s the

task of spilt the text into units called tokens. The NLTK 1 tool kit used for tok-

enizating both the collected dataset (Adataset) and the Mdataset into sentences

and words.

5.2.2 Text cleaning

In this step all irrelevant data are removed including punctuation, stop-words,

non alphabetic terms. The NLTK tool kit and "stripped" used that is python

embedded library for this task.

5.2.3 Normalization

Normalization is a process to convert the words to a more uniform sequence.

Three NLP techniques used for the transformation. First, all tokens converted

into small letter. Second, the words classifying into their Parts of Speech (PoS)

(e.g. noun, verb, adverb, adjective etc.) for each word in a sentence. Finally,

the POS tags to lemmatizetion process that return each word to it root with pre-

knowledge the POS tags. The NLTK used that uses the WordNet lemmatizer

library 2.

5.3 Features engineering

Multiple NLP techniques were used to extract features from text. Two approaches

were used for converting the words to form that will be understand by machine

1https://www.nltk.org/
2https://wordnet.princeton.edu/

https://www.nltk.org/
https://wordnet.princeton.edu/

87

learning to classify the text comments. The following techniques are used in all

experiments.

5.3.0.1 TF-IDF vectorization

After the comments and commits pass through the pre-processing pipeline as

mention above. The tokens are converted into numbers (or features). Then

these tokens used to create dictionary of unique words for all comments in each

dataset. The size of the dictionary for Mdataset was 6327 unique words out of

44895 words. For Adataset, the dictionary size was 3948 uniques words out of

20929 words. The combined dataset has 8390 unique words out of 65824 words.

This means, for each comments the vector size is equal to the length of dictio-

nary. These steps repeated to show how much the special terms in the comments

such as "TODO", "FIXME", "XXX", and "HACK", take place from all the words.

This is shown in the tables 5.2, 5.3. As it is shown from the figures in the tables,

the special terms appeared 4112 times in the combined dataset, 1019 times in

Adataset, and 3093 times in the Mdataset.

M DS A DS Combined DS

All Words 44895 20929 65824

Unique words 6327 3948 8390

TABLE 5.2: Unique words with special terms

M DS A DS Combined DS

All Words 41802 19910 61712

Unique words 6324 3944 8387

TABLE 5.3: Unique words without special terms

88

Finally, the TF-IDF method calculates the relative frequency of each unique

word in a specific comment. The words are then given a weight that is inversely

proportional with their frequency across the whole dataset that is frequently

repeated with little weights.

5.3.0.2 Word2Vec vectorization

Word2Vec3 is one of the most popular word embedding pre-trained model in-

troduced by google. Five pre-trained models used in the experiments.

• Word2Vec model pre-trained on part of Google News dataset (about 100

billion words). This model generates 300-dimensional vectors for 3 million

words and phrases.

• Software engineering specific model[16]. It is a word2vec model trained

on over 15GB of textual data from stack overflow posts. Six billions of

words were used for training. The output is 200-dimensional vectors for

1,787,145 keywords.

5.3.0.3 Universal sentence encoder

Universal sentence encoder is a family of pre-trained sentence encoders intro-

duced by Google. This method will be used for embedding sentences for classic

machine learning, instead of using an average of word embedding such that cal-

culated for each sentence. The universal sentence encoder model is trained on

huge data and supports more than 16 languages. The output of this model is

512-dimensional vectors for each sentence. 4

3https://code.google.com/archive/p/word2vec/
4https://tfhub.dev/google/universal-sentence-encoder-multilingual/3

https://code.google.com/archive/p/word2vec/
https://tfhub.dev/google/universal-sentence-encoder-multilingual/3

89

5.3.0.4 GloVe vectorization

GloVe is an extension for the Word2vec model. It learns by building a co-occurrence

matrix (words X context) that essentially counts the number of times the word

appears in the context. The public domain model “glove.840B.300d” used, that

includes 840B tokens, 2.2M vocabulary, 300-dimensional vectors, and the model

size is 2.03GB 5.

5.3.0.5 Fasttext vectorization

For efficient learning of word embedding at a character-level, the Fasttext pre-

trained model that used; "crawl-300d-2M.vec": 2 million word vectors trained

on Common Crawl (600B tokens) with 300-dimensional vectors 6.

5.3.0.6 BERT vectorization

The BERT-BASE model is used. It has a number of transformer blocks 12, hidden

layer size 768, attention heads 12. Tensorflow hub used to load the BERT pre-

trained model 7.

5.3.1 Parameters setting for classifiers

In all the experiments, the dataset is splitted into 0.80 for training and 0.20 for

testing.

5.3.1.1 Classic machine learning classifiers

For all experiments that used the classical ML algorithms, the default setting

parameters used, as the Scikit-learn library provided 8.

5https://nlp.stanford.edu/projects/glove/
6https://fasttext.cc/docs/en/english-vectors.html
7https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
8https://sklearn.org/

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
https://sklearn.org/

90

5.3.1.2 Deep learning classifiers

For all deep learning-based experiments, the Keras and TensorFlow library used

is an open-source neural-network library written in Python 9. The embedding

dimension parameter was fixed according to the pre-trained model used. Most

pre-trained models produce 300 dimensions in all experiments, except the soft-

ware engineering and the universal sentence encoder pre-trained models that

are 200 and 512 dimensions, respectively. The number of target classes was set

to 5, that equal to the number of SATD types considered in this study. Two

architectural neural networks are used for CNN; simple CNN (single hidden

layer), and complex CNN (multiple hidden layers). The difference between the

two networks is the number of layers. In single-layer CNN, one layer is used

for convolutional and pooling layers, whereas three layers are used for complex

CNN. The reset of parameters were fixed as follow: number of filters: 128, num-

ber of classes: 5 , stride: 1, filter size for layers in order: [2,3,4], dropout: 0.2,

batch size: 32, number of max epochs: 20.

To avoid over-fitting problems in training and to get the optimal number of

epochs. The model stops training when a monitored metric has stopped im-

proving. The callbacks 10 early stopping parameter used in the fit model, the

callback will stop the training when there is no improvement in the valida-

tion loss for five consecutive epochs. The activation functions: "relu" and

"softmax" ,optimizer: "adam" . Since the training does not depend on the own

embedding, the pre-trained model was used, the trainable parameter set to false,

and the own embedding matrix passed in weights parameter.

9https://www.tensorflow.org/
10https://keras.io/api/callbacks/early_stopping/

https://www.tensorflow.org/
https://keras.io/api/callbacks/early_stopping/

91

Chapter 6

Experiments and results

This chapter presents all the experiments conducted and the results with a dis-

cussion. In all experiments presented int his chapter, the accuracy and weighted

average of three metrics, precision, recall and F1-score metrics are used for the

system performance.

6.1 Experiments using classical machine learning algo-

rithms

In these experiments presented in this section, each of the classical ML tech-

niques described in the methodology chapter, are trained on the training data

and evaluated on the test data of each of the three datasets that include Mdataset,

Adataset, and the combined dataset.

6.1.1 Experiment set 1: Adataset

This set of experiments includes the three classical classifiers (RF, SVM, and NB)

trained and evaluated on TF-IDF and USE features extracted from Adataset. The

results of these six experiments are shown in table 6.1.

92

Figure 6.1.1 shows the performance of the RF classifier with the TF-IDF (best

accuracy system) for each type of SATD categories.

FIGURE 6.1.1: RF and TF-IDF performance metrics for each type
of SATD in Adataset

ADataset

Naive Bayes

Precision Recall F1-score Accuracy Testing time

TF-IDF 0.703 0.683 0.654 0.683 0.006

USE 0.746 0.723 0.726 0.723 0.011

Random Forest

TF-IDF 0.836 0.822 0.81 0.822 0.029

USE 0.801 0.779 0.771 0.779 0.018

Support Vector Machines

TF-IDF 0.826 0.812 0.816 0.812 0.006

USE 0.803 0.792 0.795 0.792 0.004

TABLE 6.1: ML performance metrics with all classifiers for
Adataset

As shown in table 6.1, in two experiments (RF and SVM) of the first set that

93

are performed on Adataset, the TF-IDF vectorization features outperform the

USE features. The SVM works better than RF in terms of f1-score and testing

computation time. However, RF outperforms the SVM in precision and recall.

Moreover, the accuracies of the 10 runs of the SVM classifier ranges from 0.792

to 0.812, where, RF ranges from 0.802 to 0.822. In terms of f1-score, The RF and

SVM systems with the TF-IDF outperformed the baseline binary classifier sys-

tem described in [28], by 0.105 and 0.113, respectively. When comparing with

only requirement and design classes (baseline classes), The RF and TF-IDF sys-

tem outperforms the baseline by 0.144 for average f1-score.

Figure 6.1.2 shows the three classic machine learning classifiers with TF-IDF

and USE.

FIGURE 6.1.2: The accuracy of classic machine learning with TF-
IDF and USE for Adataset

94

6.1.2 Experiments set 2: Mdataset

This experiments set evaluate the three ML classifiers with Mdataset. All the

configurations used in this experiments set is kept the same as used in exper-

iments set 1, except the dataset has been changed to the Mdataset. The main

results of the six experiments of set 2 are shown in table 6.2. As it is clear from

these results, the RF classifier outperformed the other two classifiers. The figure

6.1.3 shows the results of the RF classifier with TF-IDF vectoriztion method for

each type of the SATD categories.

FIGURE 6.1.3: RF and TF-IDF performance metrics for each type
of SATD in Mdataset

95

M Dataset

Naive Bayes

Precision Recall F1-score Accuracy Testing time

TF-IDF 0.67 0.696 0.59 0.696 0.012

USE 0.664 0.639 0.646 0.639 0.018

Random Forest

TF-IDF 0.826 0.82 0.801 0.82 0.075

USE 0.838 0.807 0.778 0.807 0.035

Support Vector Machines

TF-IDF 0.774 0.783 0.775 0.783 0.012

USE 0.737 0.753 0.728 0.753 0.007

TABLE 6.2: ML performance metrics with all classifiers for
Mdataset

Similar to the experiments set 1, the TF-IDF outperforms the USE vectoriza-

tion method. By comparing these results with the systems results with Adataset,

the Adataset outperforms the Mdataset in the defect, the requirement, and the

test categories, whereas,the Mdataset gives better results for the design and the

documentation categories. Moreover, The RF system with the TF-IDF outper-

forms the baseline described in [28] which uses the same Mdataset by 0.055 of

average f1-score for two types of SATD (requirement and design). For the five

types of SATD, the proposed approach achieves an average of f1-score 0.801,

which outperforms the baseline by 0.092 .

Figure 6.1.4 shows the three classic machine learning classifiers with TF-IDF

and USE.

96

FIGURE 6.1.4: The accuracy of classic machine learning with TF-
IDF and USE for Mdataset

6.1.3 Experiments set 3: The combined dataset

In this experiments set, Adataset merged with the Mdataset into one combined

dataset that used for training and testing the systems presented in this subsec-

tion. The main results of the six experiments of set 3 are shown in table 6.3.

As it is clear from these results, the RF classifier outperformed the other two

classifiers. The figure 6.1.5 shows the results of the RF classifier with TF-IDF

vectoriztion method for each type of the SATD categories.

97

FIGURE 6.1.5: RF and TF-IDF performance metrics for each type
of SATD in combined dataset

Combined Dataset

Naive Bayes

Precision Recall F1-score Accuracy Testing time

TF-IDF 0.61 0.627 0.521 0.627 0.016

USE 0.657 0.623 0.633 0.623 0.045

Random Forest

TF-IDF 0.804 0.794 0.776 0.794 0.093

USE 0.778 0.739 0.699 0.74 0.054

Support Vector Machines

TF-IDF 0.759 0.767 0.76 0.767 0.015

USE 0.703 0.718 0.698 0.718 0.008

TABLE 6.3: ML performance metrics with all classifiers for com-
bined dataset

The RF outperforms the other classifiers by using the two vectorization meth-

ods TF-IDF and USE. By referring back to the two previous experiments set (1

and 2) which used the same techniques with Adataset and Mdataset, the expec-

tation is that the systems performance will be improved by combining the two

98

datasets, since this gives the systems more training data. However, the results

show the opposite, and the accuracy drops from 0.822 and 0.820 for Adataset

and Mdataset, respectively, to 0.794 with the combined dataset. In order to get

a robust conclusion about the effect of the data combining on the performance,

and present an answer to the RQ3 the deep learning techniques with the com-

bined dataset will be used as described in the subsequent sections.

Figure 6.1.6 shows the the three classic machine learning classifiers with TF-

IDF and USE.

FIGURE 6.1.6: The accuracy of classic machine learning with TF-
IDF and USE for combined dataset

6.2 Deep learning

In these experiments presented in this section, tow models of CNN are used,

single-layer CNN (SLCNN), and multiple-layer CNN (MLCNN). The two mod-

els of CNN take the same parameters as mention in the experimental setup sec-

tion 5. Each model of the CNN classifiers is trained on the train data and evalu-

ated on the test data for each of the three datasets. The five pre-trained models

99

(W2V, SEW2V, Glove, Fasttext, and BERT), and TF-IDF are all used for features

extraction for the CNN models.

6.2.1 Single-layer CNN

6.2.1.1 Experiments set 4: Adataset

In this set of experiments, the five pre-trained models and TF-IDF used with

Adataset to train and test a single-layer CNN. The main results of the six exper-

iments are shown in table 6.4. The results show that the system with the BERT

pre-trained model outperformed the TF-IDF and the other pre-trained models.

Figure 6.2.1 shows the results of the SLCNN classifier with BERT model for each

class of SATD categories.

FIGURE 6.2.1: SLCNN and BERT performance metrics for each
type of SATD in Adataset

100

ADataset

Single-layer CNN

Precision Recall F1-score Accuracy Testing time No Epoch

TF-IDF 0.778 0.772 0.771 0.772 0.066 6

W2V 0.817 0.815 0.811 0.815 0.067 6

SE-W2V 0.793 0.785 0.786 0.785 0.066 11

GloVe 0.826 0.822 0.819 0.822 0.066 6

Fasttext 0.835 0.828 0.827 0.828 0.062 6

BERT 0.841 0.832 0.834 0.832 0.107 10

TABLE 6.4: SLCNN performance metrics with all pre-trained
models and TF-IDF for Adataset

The results of classical ML classifiers voted to the RF with TF-IDF as a best

approach as mentioned in the previous experiments. The RF with TF-IDF will be

consider as a baseline for the deep learning experiments. AS the results shows

in the above table 6.4. The BERT model is the best classifier that achieves the

best accuracy (0.832), and it outperforms the other models in all performance

metrics (precision : 0.836, recall : 0.822, f1-score: 0.81, and accuracy: 0.822). The

TF-IDF works with less accuracy with deep learning approach. compared with

the other pre-trained models, the Fasttext is better than RF, and the GloVe has

the same accuracy, but it is better in f1-score than RF. Another observation about

the results of experiment set 4 is that CNN with pre-trained models outperform

the traditional machine learning.

Figure 6.2.2 shows the single-layer CNN classifier with TF-IDF and pre-

trained models.

101

FIGURE 6.2.2: The accuracy of single-layer CNN with TF-IDF
and pre-trained models for Adataset

6.2.1.2 Experiments set 5: Mdataset

In this set of experiments, the TF-IDF and five types of pre-trained models are

used for features representation with the Mdataset. The main results of the

single-layer CNN experiments are shown in table 6.5.These results show, the

Word2Vec model outperforms the TF-IDF and the other pre-trained models. Fig-

ure 6.2.3 shows the results of the SLCNN classifier with the Word2Vec features,

for each type of SATD categories.

102

FIGURE 6.2.3: SLCNN and Word2Vec performance metrics for
each type of SATD in Mdataset

M Dataset

Single-layer CNN

Precision Recall F1-score Accuracy Testing time No Epoch

TF-IDF 0.757 0.761 0.739 0.761 0.138 6

W2V 0.807 0.812 0.798 0.812 0.106 7

SE-W2V 0.783 0.791 0.783 0.791 0.118 6

GloVe 0.802 0.802 0.785 0.802 0.156 9

Fasttext 0.804 0.806 0.788 0.806 0.161 9

BERT 0.796 0.804 0.792 0.804 0.224 10

TABLE 6.5: SLCNN performance metrics with all pre-trained
models and TF-IDF for Mdataset

In this set of experiments the accuracy of the five pre-trained models ranges

from 0.791 to 0.812. The Word2Vec model achieves the best accuracy. By com-

paring proposed system which classifies SATD into five classes with the result

of the binary classification study [55] that used CNN model and the Mdataset,

the SLCNN system outperforms it in the five pre-trained models and TF-IDF.

103

Figure 6.2.2 shows the single-layer CNN classifier with TF-IDF and pre-

trained models.

FIGURE 6.2.4: The accuracy of single-layer CNN with TF-IDF
and pre-trained models for Mdataset

6.2.1.3 Experiments set 6: Combined dataset

The main results of the six experiments of set 6 are shown in table 6.6.The

Word2Vec model outperforms the TF-IDF and the other pre-trained models. Fig-

ure 6.2.5 shows the results of the SLCNN classifier with Word2Vec model for

each type of SATD categories.

104

FIGURE 6.2.5: SLCNN and Word2Vec performance metrics for
each type of SATD in combined dataset

Combined Dataset

Single-layer CNN

Precision Recall F1-score Accuracy Testing time No Epoch

TF-IDF 0.726 0.73 0.722 0.73 0.231 6

W2V 0.769 0.777 0.767 0.777 0.224 6

SE-W2V 0.762 0.769 0.76 0.769 0.126 6

GloVe 0.757 0.765 0.752 0.765 0.178 10

Fasttext 0.767 0.774 0.758 0.774 0.13 6

BERT 0.77 0.776 0.77 0.776 0.196 10

TABLE 6.6: SLCNN performance metrics with all pre-trained
models and TF-IDF for combined dataset

By these experiments, that are trying to answer the (RQ3): "How well com-

bined the two datasets can improves classification accuracy?". As the results

show in the table 6.6, word2Vec is the best. comparing with BERT the result was

very close for both model accuracy, and the different between accuracy of two

classifiers is 0.001. However, BERT outperforms the word2Vec in f1-score and

105

precision. More analysis and experiments to explore the effect of data combina-

tion on the systems performance are described in section 6.2.2.3 with answer the

RQ3.

Figure 6.2.6 shows the single-layer CNN classifier with TF-IDF and pre-

trained models.

FIGURE 6.2.6: The accuracy of single-layer CNN with TF-IDF
and pre-trained models for combined dataset.

6.2.2 Multiple-layer CNN (MLCNN)

In order to present an answer to RQ4: "Does increasing the numbers of layers

in CNN model improve the accuracy of the study approach ?", a set of exper-

iments are conducted to evaluate MLCNN. All the configurations used in this

experiments set is kept the same as used in experiments set SLCNN, except the

number of layers has been changed to three.

106

6.2.2.1 Experiments set 7: Adataset

The main results of these six experiments set are shown in table 6.7.These results

show, the BERT model outperforms the TF-IDF and the other pre-trained mod-

els. Figure 6.2.7 shows the results of the MLCNN classifier with BERT model for

each category of SATD.

FIGURE 6.2.7: MLCNN and BERT performance metrics for each
type of SATD in Adataset

ADataset

Multiple-layer CNN

Precision Recall F1-score Accuracy Testing time No Epoch

TF-IDF 0.789 0.789 0.792 0.79 0.085 8

W2V 0.809 0.815 0.807 0.815 0.148 8

SE-W2V 0.813 0.822 0.814 0.822 0.14 8

GloVe 0.824 0.815 0.816 0.815 0.15 7

Fasttext 0.825 0.828 0.825 0.828 0.142 6

BERT 0.843 0.838 0.839 0.838 0.153 10

TABLE 6.7: MLCNN performance metrics with all pre-trained
models and TF-IDF for Adataset

107

The main results of these experiment set are shown in table 6.7. By compar-

ing the results of the SLCNN and MLCNN systems, the MLCNN outperforms

the SLCNN in two models SE-W2V and BERT. Table 6.2.9 and the figure 6.2.10

present the results for SLCNN and MLCNN. For the W2V and Fasttext models,

the accuracy and recall are equal, but the f1-score and precision in SLCNN is

better than MLCNN. The Golve with SLCNN outperforms the MLCNN.

Figure 6.2.8 shows the multiple-layer CNN classifier with TF-IDF and pre-

trained models.

FIGURE 6.2.8: The accuracy of multiple-layer CNN with TF-IDF
and pre-trained models for Adataset.

FIGURE 6.2.9: MLCNN and SLCNN results for Adataset

108

FIGURE 6.2.10: Chart MLCNN and SLCNN results for Adataset

6.2.2.2 Experiments set 8: Mdataset

The main results of these six experiments set are shown in table 6.8. These results

show that the BERT model outperforms the TF-IDF and the other pre-trained

models. Figure 6.2.11 shows the results of the MLCNN classifier with BERT

model for each type of SATD categories.

FIGURE 6.2.11: MLCNN and BERT performance metrics for each
type of SATD in Mdataset

109

M Dataset

Multiple-layer CNN

Precision Recall F1-score Accuracy Testing time No Epoch

TF-IDF 0.721 0.748 0.707 0.748 0.148 7

W2V 0.779 0.793 0.776 0.793 0.206 7

SE-W2V 0.797 0.805 0.794 0.805 0.226 6

GloVe 0.792 0.799 0.784 0.799 0.218 7

Fasttext 0.783 0.791 0.783 0.791 0.228 6

BERT 0.804 0.809 0.795 0.809 0.316 10

TABLE 6.8: MLCNN performance metrics with all pre-trained
models and TF-IDF for Mdataset

In these set of experiments, the results of MLCNN with Mdataset are im-

proved in two models, BERT and SE-W2V. This result is the same result of ML-

CNN with Adataset. The accuracy of the other three models (W2V, Glove, Fast-

text) is better with SLCNN for the two dataset. These results are tried to answer

RQ4: "Does increasing the numbers of layers in CNN model improve the accu-

racy of the study approach ?". The results of the two set of experiments (7,8) in-

dicate that the single-layer CNN can perform better result with three pre-trained

models, with no need to the deep in neural network. Additionally, the length

of comments considered short as mentions in section 4.1.4. The length of com-

ments range from 1 to 500, mostly falls between 1 and 50 words, and the average

of numbers of words in the comment is 11. These results of the two experiments

agree with the study [10] found that for text within 50 words a convolution pool-

ing layer can be set, and within 500 words of text two convolution pooling layers

can be used. The table 6.2.13 and the figure 6.2.14 show the results of MLCNN

110

and SLCNN for Mdataset. For the BERT model, the result is better when us-

ing MLCNN, because the architecture of BERT for word embedding is different

from other models. For the SE-W2V, the main different between this model and

the other models is the dimensional vector, SE-W2V is 200-dimensional and the

other models is 300.

Figure 6.2.12 shows the multiple-layer CNN classifier with TF-IDF and pre-

trained models.

FIGURE 6.2.12: The accuracy of multiple-layer CNN with TF-
IDF and pre-trained models for Mdataset.

FIGURE 6.2.13: MLCNN and SLCNN results for Mdataset

111

FIGURE 6.2.14: Chart MLCNN and SLCNN results for Mdataset

6.2.2.3 Experiments set 9: An exploratory experiment for combined-2 dataset

This experiment was conducted to answer the RQ3: "How well combined the

two datasets improve classification accuracy?". In the two previous experiment

sets 3 and 6, the accuracy of classifiers is not improved with the combined

dataset. More analysis and experiments to explore the results of the best clas-

sifier in these two experiments (3,6). By comparing the f1-score for each type

of SATD, the requirement and defect types are the loss accuracy. The first try

was balance the dataset using oversampling by duplicate the minority classes

(requirement, defect, test, documentation) to the majority class (design) using

the re-sample from the sklearn toolkit 1. Oversampling doesn’t improve the ac-

curacy of classifiers for the combined dataset. Second,the new strategy called

exclude-one-merge-four was defined as shown in figure 6.2.15. This strategy re-

peated for each types of SATD with observation the accuracy until the require-

ment class excluded from Adataset and merge the other four classes of SATD,

1https://scikit-learn.org/stable/modules/generated/sklearn.utils.
resample.html

https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html

112

the accuracy is improved and outperforms the Adataset and the Mdataset. By

repeating the same steps and exclude the requirement from Mdataset and merge

the four types (design, defect, test, documentation), the result of accuracy was

improved . Tables 6.9 , 6.10, 6.11 show the results of the combined dataset af-

ter excluding the requirement from the combining process. The explanation of

these results refer the following reasons.

• Most of previous studies classify the SATD within one project, which some

comments describe the code problem using the terms of specific domain,

for example " // TODO should this use setDone()? // TODO should

this use setFirst()?". This comments labeled as requirement TD that took

from Mdataset. setDone and setFirst are the terms used in "apache-jmeter"

project, not necessary use these terms in other project. This study used

the comments and commits from seven projects of different domain, and

combined these projects with 10 projects from Mdataset, and classified the

SATD for cross-project.Additionally, When converting some terms to vec-

tors using word embedding, the pre-trained model ignore some terms, be-

cause these terms did not exist in the vocabulary of model. For exam-

ple the number of unique words after pre-processing the comments in

Mdataset is 6108 words, by using word2vec pre-trained model to create

words embedding dictionary, the model exclude 2011 words that are not

exist in word2vec model.

• The requirement is the first stage in the software development process. It

describes the functionality of the specific system considering the domain

context of the system. By definition of requirement SATD, the comments

113

indicate that there is an ambiguous requirement that leads to the incom-

pleteness of program, class or method [41]. This misunderstand of re-

quirement lead to design or defect problem, which leads to overlapping

between these three classes. Let us demonstrate this by an example, the

following comments are classified to the three classes (requirement, de-

sign, and defect).

– "// XXX add exceptions". From [apache-ant-1.7.0], classified as re-

quirement (Mdataset).

– "TODO: We need a specific exception type here". from [argouml] clas-

sified as design (Mdataset).

– "// TODO: Shouldn’t we throw an exception here?!?!" from [argouml]

classified as defect (Mdataset).

– "// XXX - should throw an exception instead?" classified as design

(Mdataset).

– "TODO throw an exception since the query isn’t valid?" from [Word-

Press] classified as defect (Adataset).

The term "exception" appears frequently in the four comments, which clas-

sified into three different types of SATD. The term "throw" is frequent in

two different types, and the number of neighbors words after pre-processing

become small. As a result of that, the diversity of the projects increase these

overlapping between comments.

114

FIGURE 6.2.15: Exclude on merge four strategy

Combined-2 Dataset

Naive Bayes

Precision Recall F1-score Accuracy Testing time

TF-IDF 0.645 0.705 0.609 0.705 0.016

Random Forest

TF-IDF 0.82 0.826 0.807 0.826 0.053

Support Vector Machines

TF-IDF 0.793 0.806 0.795 0.806 0.015

TABLE 6.9: ML classifier for combined-2 dataset after exclude
requirements TD from Mdataset

115

Combined-2 Dataset

Single-layer CNN

Precision Recall F1-score Accuracy Testing time No Epoch

TF-IDF 0.791 0.801 0.785 0.801 0.125 6

W2V 0.82 0.824 0.799 0.824 0.086 7

SE-W2V 0.824 0.818 0.804 0.818 0.061 12

GloVe 0.827 0.822 0.799 0.822 0.066 6

Fasttext 0.828 0.829 0.805 0.829 0.109 9

BERT 0.829 0.839 0.834 0.84 0.148 10

TABLE 6.10: SLCNN for combined-2 dataset after exclude re-
quirements TD from Mdataset

Combined-2 Dataset

Multiple-layer CNN

Precision Recall F1-score Accuracy Testing time No Epoch

TF-IDF 0.792 0.802 0.784 0.802 0.138 7

W2V 0.801 0.808 0.801 0.808 0.19 6

SE-W2V 0.816 0.818 0.803 0.818 0.095 7

GloVe 0.801 0.81 0.801 0.81 0.123 11

Fasttext 0.827 0.829 0.816 0.829 0.111 6

BERT 0.833 0.849 0.835 0.849 0.2 10

TABLE 6.11: MLCNN for combined-2 dataset after exclude re-
quirements TD from Mdataset

Figure 6.2.16 shows all classifiers with TF-IDF, USE and pre-trained models.

116

FIGURE 6.2.16: The accuracy of all classifiers with TF-IDF,USE
and pre-trained models for combined-2 dataset.

6.3 Statistical Test

In all of the experiments, each experiment is repeated 10 times to estimate the

variability of the results and to evaluation how close to each other. Also, to

increase the accuracy of the estimate, assuming no bias or systematic error is

present. The same classifier runs with four datasets, and the best performance

is recorded for each one. To conduct suitable statistical test for the experiments

study , the method that produced by [14] was adopted, which performs statisti-

cal test for multi classifiers over multiple datasets, that similar to this study.

This method compares the obtained results using Friedman non-parametric

test. It ranks the classifiers for each dataset separately, then Friedman test com-

pares the average ranks of classifiers over all dataset that are shown in table 6.12.

If Friedman test finds statistically significant at p < 0.05, then null-hypothesis is

rejected, it can proceed with a post-hoc test. The Nemenyi test is used to com-

pare all classifiers to each other.

117

Classifiers Avg. Rank

MCNN-BERT 4.37

RF-TFIDF 4.17

SCNN-BERT 4.11

SCNN-Fasttext 3.97

SCNN-W2V 3.77

SCNN-Glove 3.11

MCNN-SW2v 3.08

MCNN-Fasttext 3.01

MCNN-Glove 2.45

SCNN-SW2v 2.38

MCNN-W2V 2.38

SVM-TFIDF 2.19

RF-USE 1.92

MCNN-TFIDF 1.26

SCNN-TFIDF 1.19

SVM-USE 1.13

NB-TFIDF 0.46

NB-USE 0.33

TABLE 6.12: Average ranking sorted descending for all classifiers

The result of Friedman test for null-hypothesis: the distributions of all sam-

ples are equal was rejected with P=4.69E-09. Additionally, as the paper [14]

recommended that Friedman chi-square is working better with N and k are big

enough (as a rule of a thumb, N > 10 and k > 5) where N is the number of

datasets, and K is the number of classifiers. The test was repeated with an-

other non-parametric tests that should be preferred over the parametric ones

118

[14]. Kruskal-Wallis test used, and the P value was 1.50E-05. Since the Null

hypothesis was reject. Then Nemenyi test conducted. Figure 6.3.1 shows the re-

sults of Nemenyi test, that present that there are statistically significant between

accuracy of algorithms.

FIGURE 6.3.1: Nemenyi test Shows the p values for each pair

6.4 Discussion:

This section summarizes the discussion of results presented in the previous sec-

tions. Also, those results will be reflected on the research questions listed in

the introduction and how the obtained results present answers to the questions.

Let us start from the last experiment that answers the RQ3: How well com-

bined the two datasets improve classification accuracy ?. For this question,

three experiments 3, 6, and 9 were conducted with the combined datasets. In

119

experiment 3 the classical machine learning was used with three classifiers al-

gorithms. The experiment was repeated by using CNN as a classifier with five

pre-trained word embedding models. In these two experiments (3,6), the re-

sults of accuracy did not improve. So the exploratory experiment (9) perform to

analyze the results. The main finding was the main reason that declined the ac-

curacy overlapping between the comments, especially between requirement TD

and design, that what happened during manual annotation for Adataset, most

the difference between the first author annotation and the experts was in these

two types of comments. In experiment (9) exclude-on-merge-four strategy was

applied, and with excluding the requirement TD that belonged to Mdataset, and

combined the other four types of SATD. As a result of this experiment, the accu-

racy was improved with the best classifier MLCNN and BERT model to 0.849.

For the first question RQ1: How well the NLP pre-trained models can

improve the identification of self-admitted technical debt from source code

comments and commits effectively ?. This study investigated the effectiveness

of the NLP techniques for word representation and feature engineering to con-

vert the words of comments to vectors. Six techniques used in all experiments

can be the answer to RQ1. In experiments set 1 and 2, NLP count-based ap-

proach (TF-IDF) was used, and word embedding (USE) with three traditional

machine learning algorithms (NB, RF, SVM). The results were the traditional ML

improved the accuracy with TF-IDF comparing with ML and word embedding

methods. In the experiments set 4 and 5, five types of word embedding meth-

ods were used, and TF-IDF with deep learning. The results of these experiments

were; that deep learning working better with word embedding than TF-IDF. As

a result that, NLP approaches improved the accuracy comparing with the base-

line that used text-mining. In text-mining, the information could be patterns in

120

text or matching structure, but the semantics in the text is not considered. Addi-

tionally, for the two datasets (Adataset, combined-2 dataset), by using state-of-

the-art NLP and deep learning, the accuracy is better than machine learning. The

conclusion was the state-of-the-art NLP techniques, and the pre-trained models

improve the accuracy of identification SATD. For the RQ2:How well machine

learning algorithms that include (SVM, NB, RF, and CNN) can automatically

classify the five SATD types efficiently ? To answer this question, this study in-

vestigated the effectiveness of the traditional and state-of-the-art techniques to

classifying SATD. Three classical machine learning classifiers (NB,RF, and SVM)

are used with TF-IDF and USE. The RF was the best classifier for three datasets

with accuracy (Adataset : 0.822, Mdataset : 0.820, and combined-2 dataset :

0.826). Moreover, the classic machine learning achieved the lowest results with

USE; the result ranged from 0.726 to 0.795 for the three classifiers using Adataset,

and from 0.639 to 0.807 for Mdatset. For deep learning and TF-IDF, the results

ranged from 0.748 to 0.802 for all datasets. Using the state-of-the-art pre-trained

models with deep learning, the results ranged from 0.791 to 0.849 for all datasets,

and the best accuracy for BERT. The last RQ4: Does increasing the number of

layers in CNN model improve the accuracy of the study approach ?. To answer

this question, two types of CNN models (SLCNN, MLCNN) were used; the first

model use the one embedding layer, one convolutional layer, and one pooling

layer. In the second model, three layers for each type used. As the results show

in experiments set (4,5,7,8,9), three models(W2V, Glove, Fasttext) working better

with SLCNN. The SE-W2V was better with MLCNN for Adataset and Mdataset,

and gave the same accuracy with combined-2 dataset. The BERT model was the

best classifier with MLCNN in all datasets. As mentioned in experiments set

8, it has more than one factor to determine the best number of layers that will

be used in the CNN model. The dataset size, the length of sentences, and the

121

architecture of word embedding model play a role in the number of layers for

CNN model.

Figure 6.4.1 shows the accuracy of all the experiments results. The figures6.4.2,

6.4.3 shows the confusion matrix for the two best classifiers with Adataset and

Mdataset.

FIGURE 6.4.1

FIGURE 6.4.2: Confusion matrix for MLCNN with BERT model
for Adataset

122

FIGURE 6.4.3: Confusion matrix for RF with TF-IDF for Mdataset

123

Chapter 7

Conclusion and future work:

Source code comments are explanation or annotation that written by the devel-

opers. Comments allow developers to clarify, document and express concerns

about the implementation in an informal method that does not influence the pro-

gram’s functionality and are generally ignored by compilers and interpreters.

Commits messages are the expression of action that the developers made on the

source code and document this action with semantic commits. Self-Admitted

Technical Debt (SATD) is comments or commits that indicate an issue in the part

of code that needs additional cost. These issues are caused by a sub-optimal so-

lution instead of using a better approach. There are five essential types of SATD

that affect the software quality and should be identified. Manually analyzing

SATD is tedious and time-consuming. This thesis presented classical machine

learning and deep learning approaches to identify and classify SATD from com-

ments and commits. Furthermore, This thesis investigated the effectiveness of

NLP feature engineering techniques for SATD classification. Different NLP tech-

niques were presented in this thesis, including TF-IDF and word embedding

vectorization methods to feed in different classifiers.

Three datasets were used in this thesis; the first one is the public dataset

124

(Mdataset). This dataset consists of 62k comments extracted from 10 open-

source projects, 4017 comments classified into five types of SATD, requirement,

design, defect, test, and documentation. The second dataset (Adataset), that cre-

ated by this study. Adataset included 5082 comments and commits from 7 open

source projects that were classified as SATD. Manually labeled the SATD com-

ments into five types of SATD, resulting in 1513 comments and commits man-

ually labeled by the author and software experts. Kappa statistical test was ap-

plied to accept the label of each SATD comment to verify its authenticity. The test

achieved a level of agreement measured between the author and experts +0.82

based on a sample including 0.17 of all technical debt types, which is consid-

ered almost perfect agreement according to Fleiss [18] values larger than +0.75

are characterized as excellent agreement. The last dataset is the combined two

datasets.

A set of experiments are conducted for investigating the effectiveness of the

NLP techniques and the effectiveness of the ML and DL techniques for identify-

ing the SATD comments extracted from 17 open-source projects. The traditional

well-known TF-IDF NLP techniques, and the state-of-the-art word embedding

techniques USE, Word2vec, Golve, Fasttext, and BERT were used for represent-

ing comments into a numerical feature vectors. The TF-IDF depends on the sta-

tistical information of the comment sentence, whereas, the embedding methods

focus on the semantic information of the sentences.

The evaluation performance method for this study will be by comparing

the accuracy of classifiers for the three datasets. For classic machine learning,

three types of the classifier were used (NB, RF, and SVM) with two types of

word representation methods (TF-IDF and USE). The classical machine learn-

ing techniques are working better with traditional NLP techniques. This can be

improved by comparing the best classifier accuracy (RF and TF-IDF) with (RF

125

and USE), the results for Adataset, with TF-IDF achieved accuracy 0.822, while

USE 0.771. For Mdataset TF-IDF achieved 0.820, and USE 0.807. Finally, RF and

TF-IDF with combined-2 dataset achieved accuracy 0.826. For deep learning ap-

proach, CNN classifier used with 5 NLP word embedding methods, and CNN

with TF-IDF. The CNN and BERT model achieved best accuracy for Adataset:

0.838, and for combined-2 dataset: 0.849. The Word2Vec was the best according

to Mdataset with accuracy 0.812.

7.0.1 Future work

SATD is an essential indicator for evaluating software quality. This study ap-

proach reflects the effective way to identify the critical five types of SATD. In

the future, The plan is to increase the scale of the proposed system by adopting

more projects that developed in different programming languages, additionally

in a different domain, for example, mobile applications, commercial software,

medical domain. More investigation in others neural networks, deep learning

architectures, and pre-trained models, by fine tunning the parameters of models

in order to improve the accuracy of classifiers. Combined more than one classi-

fiers, the main observation that some classifiers achieved f1-score better for one

or two types of SATD. So the combination between classifiers might improve the

accuracy of the model. For example, the classic machine learning could be used

to classify the design and requirement and the deep learning to classify other

types and combined them in one model.

Creating a specific pre-trained model for SATD by collecting a vast num-

ber of commits and commits from different software domains. At the same

time, building this model using a different word embedding architecture such

as BERT, GPT-3. Finally, the datasets of SATD need more analysis for more com-

ments and commit, and using NLP techniques to draw the general pattern for

126

SATD.

7.0.2 Threats to validity

Internal validity : To classify the comments and commits for five types of SATD

in Adataset. The threats to internal validity in this process include human fac-

tors to determining the correct identification of SATD types. To mitigate this

threat, first, the comments and commits were collected depending on previous

studies that classified these sentences to SATD. In the second step, all comments

and commits that the first author classified was selected randomly through the

website created for this job. After that, the comments that were classified ran-

domly selected for the three experts to classifying again. Then, the level of agree-

ment was evaluated between both experts and author by calculating Cohen’s

kappa coefficient [11]. The Cohen’s Kappa coefficient is a widely used method

to evaluate inter-rater agreement level for categorical scales, and it calculates

the proportion of agreement that is chance-corrected. The result of the coef-

ficient is scaled from -1 and +1, with a negative value indicating worse than

chance agreement, zero means exactly chance agreement, and a positive value

indicates better than chance agreement [17]. Whenever the value is closer to +1

, the agreement is stronger. The level of agreement measured between the au-

thor and experts was achieved of +0.82 based on a sample including 0.17 of all

technical debt types, which is considered almost perfect agreement according to

Fleiss [18] values larger than +0.75 are characterized as excellent agreement.

External validity : To Considering the generalization of thesis findings. The

public dataset that used in this study derived from comments of 10 open source

project. To minimize external validity, new dataset was created from 7 open

source project, two of them mobile applications. Additionally, the comments

and commits were merged in the same dataset.

127

Bibliography

[1] Ravinder Ahuja et al. “The impact of features extraction on the sentiment

analysis”. In: Procedia Computer Science 152 (2019), pp. 341–348.

[2] AI Programming: 5 Most Popular AI Programming Languages | Existek Blog.

https://existek.com/blog/ai-programming-and-ai-programming-

languages/. (Accessed on 04/10/2021).

[3] Nicolli SR Alves, Thiago S Mendes, and G Manoel. “de Mendonça, Ro-

drigo O. Spınola, Forrest Shull, Carolyn Seaman, Identification and man-

agement of technical debt”. In: Information and Software Technology 70 (),

pp. 100–121.

[4] Nicolli SR Alves et al. “Towards an ontology of terms on technical debt”.

In: 2014 Sixth International Workshop on Managing Technical Debt. IEEE. 2014,

pp. 1–7.

[5] Venera Arnaoudova et al. “The use of text retrieval and natural language

processing in software engineering”. In: 2015 IEEE/ACM 37th IEEE Inter-

national Conference on Software Engineering (ICSE). IEEE Computer Society.

2015, pp. 949–950.

[6] Vimala Balakrishnan and Ethel Lloyd-Yemoh. “Stemming and lemmatiza-

tion: a comparison of retrieval performances”. In: (2014).

https://existek.com/blog/ai-programming-and-ai-programming-languages/
https://existek.com/blog/ai-programming-and-ai-programming-languages/

128

[7] Gabriele Bavota and Barbara Russo. “A large-scale empirical study on self-

admitted technical debt”. In: Proceedings of the 13th International Conference

on Mining Software Repositories. 2016, pp. 315–326.

[8] David Binkley. “Source code analysis: A road map”. In: Future of Software

Engineering (FOSE’07). IEEE. 2007, pp. 104–119.

[9] Piotr Bojanowski et al. “Enriching word vectors with subword informa-

tion”. In: Transactions of the Association for Computational Linguistics 5 (2017),

pp. 135–146.

[10] Peng Ce and Bao Tie. “An Analysis Method for Interpretability of CNN

Text Classification Model”. In: Future Internet 12.12 (2020), p. 228.

[11] Jacob Cohen. “A coefficient of agreement for nominal scales”. In: Educa-

tional and psychological measurement 20.1 (1960), pp. 37–46.

[12] Ward Cunningham. “The WyCash portfolio management system”. In: ACM

SIGPLAN OOPS Messenger 4.2 (1992), pp. 29–30.

[13] Robert Dale. “The commercial NLP landscape in 2017”. In: Natural Lan-

guage Engineering 23.4 (2017), pp. 641–647.

[14] Janez Demšar. “Statistical comparisons of classifiers over multiple data

sets”. In: The Journal of Machine Learning Research 7 (2006), pp. 1–30.

[15] Ai Deng. “Mining technical debt in commit messages and commit linked

issues”. PhD thesis. 2020.

[16] Vasiliki Efstathiou, Christos Chatzilenas, and Diomidis Spinellis. “Word

embeddings for the software engineering domain”. In: Proceedings of the

15th International Conference on Mining Software Repositories. 2018, pp. 38–

41.

129

[17] Joseph L Fleiss and Jacob Cohen. “The equivalence of weighted kappa and

the intraclass correlation coefficient as measures of reliability”. In: Educa-

tional and psychological measurement 33.3 (1973), pp. 613–619.

[18] Joseph L Fleiss, Bruce Levin, Myunghee Cho Paik, et al. “The measure-

ment of interrater agreement”. In: Statistical methods for rates and propor-

tions 2.212-236 (1981), pp. 22–23.

[19] Jernej Flisar and Vili Podgorelec. “Enhanced feature selection using word

embeddings for self-admitted technical debt identification”. In: 2018 44th

Euromicro Conference on Software Engineering and Advanced Applications (SEAA).

IEEE. 2018, pp. 230–233.

[20] Jernej Flisar and Vili Podgorelec. “Identification of self-admitted techni-

cal debt using enhanced feature selection based on word embedding”. In:

IEEE Access 7 (2019), pp. 106475–106494.

[21] Martin Fowler. Technical Debt Quadrant. 2009. URL: https://martinfowler.

com/bliki/TechnicalDebtQuadrant.html (visited on 10/13/2020).

[22] Martin Fowler et al. “Refactoring: Improving the Design of Existing Code

Addison-Wesley Professional”. In: Berkeley, CA, USA (1999).

[23] Mário André de Freitas Farias et al. “A contextualized vocabulary model

for identifying technical debt on code comments”. In: 2015 IEEE 7th Inter-

national Workshop on Managing Technical Debt (MTD). IEEE. 2015, pp. 25–

32.

[24] Mário André de Freitas Farias et al. “Identifying self-admitted technical

debt through code comment analysis with a contextualized vocabulary”.

In: Information and Software Technology 121 (2020), p. 106270.

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

130

[25] Mário André de Freitas Farias et al. “Investigating the identification of

technical debt through code comment analysis”. In: International Confer-

ence on Enterprise Information Systems. Springer. 2016, pp. 284–309.

[26] Krzysztof Gajowniczek, Arkadiusz Orłowski, and Tomasz Ząbkowski. “Sim-

ulation study on the application of the generalized entropy concept in ar-

tificial neural networks”. In: Entropy 20.4 (2018), p. 249.

[27] Yoav Goldberg. “A primer on neural network models for natural language

processing”. In: Journal of Artificial Intelligence Research 57 (2016), pp. 345–

420.

[28] Qiao Huang et al. “Identifying self-admitted technical debt in open source

projects using text mining”. In: Empirical Software Engineering 23.1 (2018),

pp. 418–451.

[29] P Huilgo. Quick introduction to bag-of-words (BoW) and TF-IDF for creating

features from text. 2020.

[30] Armand Joulin et al. “Bag of tricks for efficient text classification”. In: arXiv

preprint arXiv:1607.01759 (2016).

[31] A. Kedia and M. Rasu. Hands-On Python Natural Language Processing: Ex-

plore tools and techniques to analyze and process text with a view to building

real-world NLP applications. Packt Publishing, 2020. ISBN: 9781838982584.

URL: https://books.google.ps/books?id=1AbuDwAAQBAJ.

[32] Yoon Kim. “Convolutional neural networks for sentence classification”.

In: arXiv preprint arXiv:1408.5882 (2014).

[33] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. “A survey on

code analysis tools for software maintenance prediction”. In: International

Conference in Software Engineering for Defence Applications. Springer. 2018,

pp. 165–175.

https://books.google.ps/books?id=1AbuDwAAQBAJ

131

[34] Valentina Lenarduzzi et al. “Are sonarqube rules inducing bugs?” In: 2020

IEEE 27th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER). IEEE. 2020, pp. 501–511.

[35] Yikun Li, Mohamed Soliman, and Paris Avgeriou. “Identification and Re-

mediation of Self-Admitted Technical Debt in Issue Trackers”. In: 2020

46th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA). IEEE. 2020, pp. 495–503.

[36] Erin Lim, Nitin Taksande, and Carolyn Seaman. “A balancing act: What

software practitioners have to say about technical debt”. In: IEEE software

29.6 (2012), pp. 22–27.

[37] Zhongxin Liu et al. “SATD Detector: A text-mining-based self-admitted

technical debt detection tool”. In: Proceedings of the 40th International Con-

ference on Software Engineering: Companion Proceeedings. 2018, pp. 9–12.

[38] Long Ma and Yanqing Zhang. “Using Word2Vec to process big text data”.

In: 2015 IEEE International Conference on Big Data (Big Data). IEEE. 2015,

pp. 2895–2897.

[39] Aigars Mahinovs et al. Text classification method review. 2007.

[40] Rungroj Maipradit et al. “Wait for it: identifying “On-Hold” self-admitted

technical debt”. In: Empirical Software Engineering 25.5 (2020), pp. 3770–

3798.

[41] Everton da S Maldonado and Emad Shihab. “Detecting and quantifying

different types of self-admitted technical debt”. In: 2015 IEEE 7th Interna-

tional Workshop on Managing Technical Debt (MTD). IEEE. 2015, pp. 9–15.

[42] Everton da S Maldonado et al. “An empirical study on the removal of self-

admitted technical debt”. In: 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE. 2017, pp. 238–248.

132

[43] Steve McConnell. Managing Technical Debt. 2008. URL: http : / / www .

construx.com/uploadedfiles/resources/whitepapers/Managing%

20Technical%20Debt.pdf (visited on 10/12/2020).

[44] Tomas Mikolov et al. “Distributed representations of words and phrases

and their compositionality”. In: Advances in neural information processing

systems 26 (2013), pp. 3111–3119.

[45] Tomas Mikolov et al. “Efficient estimation of word representations in vec-

tor space”. In: arXiv preprint arXiv:1301.3781 (2013).

[46] monkeylearn. Natural Language Processing (NLP) Guide – What Is NLP &

How Does it Work? 2020. URL: https://monkeylearn.com/natural-

language-processing/ (visited on 11/22/2020).

[47] Robert L Nord et al. “In search of a metric for managing architectural tech-

nical debt”. In: 2012 Joint Working IEEE/IFIP Conference on Software Archi-

tecture and European Conference on Software Architecture. IEEE. 2012, pp. 91–

100.

[48] Keiron O’Shea and Ryan Nash. “An introduction to convolutional neural

networks”. In: arXiv preprint arXiv:1511.08458 (2015).

[49] Data Monsters Olga Davydova. Text Preprocessing in Python: Steps, Tools,

and Examples. 2018. URL: https://medium.com/@datamonsters/

text-preprocessing-in-python-steps-tools-and-examples-

bf025f872908 (visited on 11/22/2020).

[50] Sheetal S Pandya and NB Kalani. “Review on text sequence processing

with use of different deep neural network model”. In: Int. J. of Advanced

Trends in Computer Science and Engineering 8.5 (2019), pp. 2224–2230.

http://www.construx.com/uploadedfiles/resources/whitepapers/Managing%20Technical%20Debt.pdf
http://www.construx.com/uploadedfiles/resources/whitepapers/Managing%20Technical%20Debt.pdf
http://www.construx.com/uploadedfiles/resources/whitepapers/Managing%20Technical%20Debt.pdf
https://monkeylearn.com/natural-language-processing/
https://monkeylearn.com/natural-language-processing/
https://medium.com/@datamonsters/text-preprocessing-in-python-steps-tools-and-examples-bf025f872908
https://medium.com/@datamonsters/text-preprocessing-in-python-steps-tools-and-examples-bf025f872908
https://medium.com/@datamonsters/text-preprocessing-in-python-steps-tools-and-examples-bf025f872908

133

[51] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove:

Global vectors for word representation”. In: Proceedings of the 2014 con-

ference on empirical methods in natural language processing (EMNLP). 2014,

pp. 1532–1543.

[52] Martin Porter. The Porter Stemming Algorithm. 2006. URL: https://tartarus.

org/martin/PorterStemmer/ (visited on 11/23/2020).

[53] Aniket Potdar and Emad Shihab. “An exploratory study on self-admitted

technical debt”. In: 2014 IEEE International Conference on Software Mainte-

nance and Evolution. IEEE. 2014, pp. 91–100.

[54] Leevi Rantala and Mika Mäntylä. “Predicting technical debt from commit

contents: reproduction and extension with automated feature selection”.

In: Software Quality Journal (2020), pp. 1–29.

[55] Xiaoxue Ren et al. “Neural network-based detection of self-admitted tech-

nical debt: from performance to explainability”. In: ACM Transactions on

Software Engineering and Methodology (TOSEM) 28.3 (2019), pp. 1–45.

[56] Rafael Meneses Santos, Methanias Colaço Rodrigues Junior, and Manoel

Gomes de Mendonça Neto. “Self-Admitted Technical Debt classification

using LSTM neural network”. In: 17th International Conference on Informa-

tion Technology–New Generations (ITNG 2020). Springer. 2020, pp. 679–685.

[57] Rafael Meneses Santos et al. “Long Term-short Memory Neural Networks

and Word2vec for Self-admitted Technical Debt Detection.” In: ICEIS (2).

2020, pp. 157–165.

[58] Giancarlo Sierra, Emad Shihab, and Yasutaka Kamei. “A survey of self-

admitted technical debt”. In: Journal of Systems and Software 152 (2019),

pp. 70–82.

https://tartarus.org/martin/PorterStemmer/
https://tartarus.org/martin/PorterStemmer/

134

[59] Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis. “Us-

ing natural language processing to automatically detect self-admitted tech-

nical debt”. In: IEEE Transactions on Software Engineering 43.11 (2017), pp. 1044–

1062.

[60] Behjat Soltanifar et al. “Software analytics in practice: a defect prediction

model using code smells”. In: Proceedings of the 20th International Database

Engineering & Applications Symposium. 2016, pp. 148–155.

[61] Carmine Vassallo et al. “How developers engage with static analysis tools

in different contexts”. In: Empirical Software Engineering 25.2 (2020), pp. 1419–

1457.

[62] Supatsara Wattanakriengkrai et al. “Automatic classifying self-admitted

technical debt using n-gram IDF”. In: 2019 26th Asia-Pacific Software Engi-

neering Conference (APSEC). IEEE. 2019, pp. 316–322.

[63] Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. “Examining the im-

pact of self-admitted technical debt on software quality”. In: 2016 IEEE

23rd International Conference on Software Analysis, Evolution, and Reengineer-

ing (SANER). Vol. 1. IEEE. 2016, pp. 179–188.

[64] What is the best programming language for Machine Learning? | by Developer

Economics | Towards Data Science. https://towardsdatascience.

com/what-is-the-best-programming-language-for-machine-

learning-a745c156d6b7. (Accessed on 04/10/2021).

[65] Wikipedia contributors. Comment (computer programming) — Wikipedia, The

Free Encyclopedia. [Online; accessed 18-December-2020]. 2020. URL: https:

//en.wikipedia.org/w/index.php?title=Comment_(computer_

programming)&oldid=993509204.

https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
https://en.wikipedia.org/w/index.php?title=Comment_(computer_programming)&oldid=993509204
https://en.wikipedia.org/w/index.php?title=Comment_(computer_programming)&oldid=993509204
https://en.wikipedia.org/w/index.php?title=Comment_(computer_programming)&oldid=993509204

135

[66] Baoxun Xu et al. “An Improved Random Forest Classifier for Text Catego-

rization.” In: JCP 7.12 (2012), pp. 2913–2920.

[67] Aiko Yamashita and Leon Moonen. “Exploring the impact of inter-smell

relations on software maintainability: An empirical study”. In: 2013 35th

International Conference on Software Engineering (ICSE). IEEE. 2013, pp. 682–

691.

[68] Meng Yan et al. “Automating change-level self-admitted technical debt

determination”. In: IEEE Transactions on Software Engineering 45.12 (2018),

pp. 1211–1229.

[69] Zhe Yu et al. “Identifying Self-Admitted Technical Debts with Jitterbug: A

Two-step Approach”. In: arXiv preprint arXiv:2002.11049 (2020).

[70] Nico Zazworka et al. “Comparing four approaches for technical debt iden-

tification”. In: Software Quality Journal 22.3 (2014), pp. 403–426.

136

Chapter 8

Appendix A

8.1 Database ER-Diagram

FIGURE 8.1.1: Database ER-Diagram

8.2 Website Pages

137

FIGURE 8.2.1: Home Page part 1

FIGURE 8.2.2: Home Page part 2

138

FIGURE 8.2.3: Home Page part 3

FIGURE 8.2.4: Information of participant

139

FIGURE 8.2.5: Classification page

	Introduction
	Motivation
	Problem statement
	 Research contributions
	Research Questions
	Structure of thesis

	Background
	Technical debt
	 Self-admitted technical debt

	Text classification
	Natural Language Processing (NLP)
	Text Pre-processing
	Word representation
	Bag Of Word (BoW)
	Term Frequency Inverse Document Frequency (TF-IDF)
	Word embeddings
	Word2Vec
	Glove
	Fasttext
	BERT

	Machine Learning (ML)
	Statistical classification
	Functional classification.
	Neural network classification
	Artificial neural network (ANN)
	Activation functions
	Convolutional Neural Network (CNN)

	Literature review
	Technical Debt Metaphor: Definition and Expansion
	Identification of Technical Debt through code-base
	Identification of Technical Debt through Source Code Comments (Self-Admitted Technical Debt)
	Pattern-based approaches
	Machine-learning approaches
	Deep-learning approaches

	Identification of Self-Admitted Technical Debt Using Commits Messages

	Research Methodology
	Dataset description
	Source code comments
	Commits messages
	Manual annotation
	Manual annotation result
	Kappa Test

	Data exploratory and analysis
	Data analysis at text level
	Data analysis at features level

	Research approach
	System design.
	Preprocessing.
	Tokenization.
	 Text cleaning:
	Normalization:

	Features engineering
	Syntactic vectorization methods
	Word embedding method

	Machine learning Classifiers
	Support Vector Machines classifier (SVM)
	Naive Bayes classifier (NB)
	Random Forest (RF)
	Convolution Neural Network (CNN)

	Evaluation metric:

	Experimental setup
	Environment setup:
	Pre-Processing
	Tokenization
	Text cleaning
	Normalization

	Features engineering
	TF-IDF vectorization
	Word2Vec vectorization
	Universal sentence encoder
	GloVe vectorization
	Fasttext vectorization
	BERT vectorization

	Parameters setting for classifiers
	Classic machine learning classifiers
	Deep learning classifiers

	Experiments and results
	 Experiments using classical machine learning algorithms
	Experiment set 1: Adataset
	Experiments set 2: Mdataset
	Experiments set 3: The combined dataset

	Deep learning
	 Single-layer CNN
	Experiments set 4: Adataset
	Experiments set 5: Mdataset
	Experiments set 6: Combined dataset

	 Multiple-layer CNN (MLCNN)
	Experiments set 7: Adataset
	Experiments set 8: Mdataset
	Experiments set 9: An exploratory experiment for combined-2 dataset

	Statistical Test
	Discussion:

	Conclusion and future work:
	Future work
	Threats to validity

	Appendix A
	Database ER-Diagram
	Website Pages

